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1

About this book

Lots of people working in cryptography have no
deep concern with real application issues. They
are trying to discover things clever enough to
write papers about.

Whitfield Diffie

This book is intended as an introduction to cryptography
for programmers of any skill level. It s̓ a continuation of a
talk of the same name, which was given by the author at Py-
Con 2013.

The structure of this book is very similar: it starts with
very simple primitives, and gradually introduces new ones,
demonstrating why theyʼre necessary. Eventually, all of this
is put together into complete, practical cryptosystems, such
as TLS, GPG and OTR.

The goal of this book is not to make anyone a cryptog-
rapher or a security researcher. The goal of this book is to
understand how complete cryptosystems work from a bird s̓
eye view, and how to apply them in real software.

The exercises accompanying this book focus on teaching
cryptography by breaking inferior systems. That way, you
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wonʼt just “know” that some particular thing is broken; youʼll
know exactly how it s̓ broken, and that you, yourself, armed
with little more than some spare time and your favorite pro-
gramming language, can break them. By seeing how these
ostensibly secure systems are actually completely broken,
you will understand why all these primitives and construc-
tions are necessary for complete cryptosystems. Hopefully,
these exercises will also leave you with healthy distrust of
DIY cryptography in all its forms.

For a long time, cryptography has been deemed the ex-
clusive realm of experts. From the many internal leaks
weʼve seen over the years of the internals of both large and
small corporations alike, it has become obvious that that ap-
proach is doing more harm than good. We can no longer
afford to keep the two worlds strictly separate. We must join
them into one world where all programmers are educated
in the basic underpinnings of information security, so that
they can work together with information security profes-
sionals to produce more secure software systems for every-
one. That does not make people such as penetration testers
and security researchers obsolete or less valuable; quite the
opposite, in fact. By sensitizing all programmers to security
concerns, the need for professional security audits will be-
come more apparent, not less.

This book hopes to be a bridge: to teach everyday pro-
grammers from any field or specialization to understand just
enough cryptography to do their jobs, or maybe just satisfy
their appetite.



2

Advanced sections

This book is intended as a practical guide to cryptography for
programmers. Some sections go into more depth than they
need to in order to achieve that goal. Theyʼre in the book any-
way, just in case youʼre curious; but I generally recommend
skipping these sections. Theyʼll be marked like this:

This is an optional, in-depth section. It
almost certainly wonʼt help you write bet-
ter software, so feel free to skip it. It is only
here to satisfy your inner geek s̓ curiosity.

12
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Development

The entire Crypto 101 project is publicly developed on
GitHub under the crypto101 organization, including this
book.

This is an early pre-release of this book. All of your
questions, comments and bug reports are highly appreci-
ated. If you donʼt understand something after reading it, or
a sentence is particularly clumsily worded, that’s a bug and
I would very much like to fix it! Of course, if I never hear
about your issue, it s̓ very hard for me to address…

The copy of this book that you are reading right now is
based on the git commit with hash 64e8ccf, also known as
0.6.0-95-g64e8ccf.
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5

Exclusive or

5.1 Description

Exclusive or, often called “XOR”, is a Boolean1 binary2 op-
erator that is true when either the first input or the second
input, but not both, are true.

Another way to think of XOR is as something called a
“programmable inverter”: one input bit decides whether
to invert the other input bit, or to just pass it through un-
changed. “Inverting” bits is colloquially called “flipping”
bits, a term weʼll use often throughout the book.

In mathematics and cryptography papers, exclusive or is
generally represented by a cross in a circle: ⊕. Weʼll use the
same notation in this book:

1 Uses only “true” and “false” as input and output values.
2 Takes two parameters.

17
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The inputs and output here are named as if weʼre using
XOR as an encryption operation. On the left, we have the
plaintext bit Pi. The i is just an index, since weʼll usually
deal with more than one such bit. On top, we have the key
bit ki, that decides whether or not to invert Pi. On the right,
we have the ciphertext bit, Ci, which is the result of the XOR
operation.

5.2 A few properties of XOR

Since weʼll be dealing with XOR extensively during this book,
weʼll take a closer look at some of its properties. If youʼre
already familiar with how XOR works, feel free to skip this
section.

We saw that the output of XOR is 1 when one input or the
other (but not both) is 1:

0⊕ 0 = 0 1⊕ 0 = 1
0⊕ 1 = 1 1⊕ 1 = 0

There are a few useful arithmetic tricks we can derive from
that.

1. You can apply XOR in any order: a⊕(b⊕c) = (a⊕b)⊕c

2. You can flip the operands around: a⊕ b = b⊕ a

3. Any bit XOR itself is 0: a ⊕ a = 0. If a is 0, then it s̓
0⊕ 0 = 0; if a is 1, then it s̓ 1⊕ 1 = 0.

4. Any bit XOR 0 is that bit again: a⊕ 0 = a. If a is 0, then
it s̓ 0⊕ 0 = 0; if a is 1, then it s̓ 1⊕ 0 = 1.
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These rules also imply a⊕ b⊕ a = b:

a⊕ b⊕ a = a⊕ a⊕ b (second rule)
= 0⊕ b (third rule)
= b (fourth rule)

Weʼll use this property often when using XOR for encryption;
you can think of that first XOR with a as encrypting, and the
second one as decrypting.

5.3 Bitwise XOR

XOR, as weʼve just defined it, operates only on single bits
or Boolean values. Since we usually deal with values com-
prised of many bits, most programming languages provide
a “bitwise XOR” operator: an operator that performs XOR on
the respective bits in a value.

Python, for example, provides the ^ (caret) operator that
performs bitwise XOR on integers. It does this by first ex-
pressing those two integers in binary3, and then performing
XOR on their respective bits. Hence the name, bitwise XOR.

73⊕ 87 = 0b1001001⊕ 0b1010111

=
1 0 0 1 0 0 1 (left)
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
1 0 1 0 1 1 1 (right)

= 0 0 1 1 1 1 0

= 0b0011110

= 30

5.4 One-time pads

XOR may seem like an awfully simple, even trivial operator.
Even so, there s̓ an encryption scheme, called a one-time

3 Usually, numbers are already stored in binary internally, so this
doesnʼt actually take any work. When you see a number prefixed with
“0b”, the remaining digits are a binary representation.
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pad, which consists of just that single operator. It s̓ called
a one-time pad because it involves a sequence (the “pad”) of
random bits, and the security of the scheme depends on only
using that pad once. The sequence is called a pad because it
was originally recorded on a physical, paper pad.

This scheme is unique not only in its simplicity, but also
because it has the strongest possible security guarantee. If
the bits are truly random (and therefore unpredictable by an
attacker), and the pad is only used once, the attacker learns
nothing about the plaintext when they see a ciphertext.4

Suppose we can translate our plaintext into a sequence of
bits. We also have the pad of random bits, shared between
the sender and the (one or more) recipients. We can com-
pute the ciphertext by taking the bitwise XOR of the two se-
quences of bits.

If an attacker sees the ciphertext, we can prove that
they will learn zero information about the plaintext without
the key. This property is called perfect security. The proof
can be understood intuitively by thinking of XOR as a pro-
grammable inverter, and then looking at a particular bit in-
tercepted by Eve, the eavesdropper.

Let s̓ say Eve sees that a particular ciphertext bit ci is 1.
She has no idea if the matching plaintext bit pi was 0 or 1,
because she has no idea if the key bit ki was 0 or 1. Since
all of the key bits are truly random, both options are exactly
equally probable.

4 The attacker does learn that the message exists, and, in this simple
scheme, the length of the message. While this typically isnʼt too impor-
tant, there are situations where this might matter, and there are secure
cryptosystems to both hide the existence and the length of a message.



CHAPTER 5. EXCLUSIVE OR 21

5.5 Attacks on “one-time pads”

The one-time pad security guarantee only holds if it is used
correctly. First of all, the one-time pad has to consist of truly
random data. Secondly, the one-time pad can only be used
once (hence the name). Unfortunately, most commercial
products that claim to be “one-time pads” are snake oil5, and
donʼt satisfy at least one of those two properties.

Not using truly random data

The first issue is that they use various deterministic con-
structs to produce the one-time pad, instead of using truly
random data. That isnʼt necessarily insecure: in fact, the
most obvious example, a synchronous stream cipher, is
something weʼll see later in the book. However, it does inval-
idate the “unbreakable” security property of one-time pads.
The end user would be better served by a more honest cryp-
tosystem, instead of one that lies about its security proper-
ties.

Reusing the “one-time” pad

The other issue is with key reuse, which is much more seri-
ous. Suppose an attacker gets two ciphertexts with the same
“one-time” pad. The attacker can then XOR the two cipher-

5 “Snake oil” is a term for all sorts of dubious products that claim ex-
traordinary benefits and features, but donʼt really realize any of them.
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texts, which is also the XOR of the plaintexts:

c1 ⊕ c2 = (p1 ⊕ k)⊕ (p2 ⊕ k) (definition)
= p1 ⊕ k ⊕ p2 ⊕ k (reorder terms)
= p1 ⊕ p2 ⊕ k ⊕ k (a⊕ b = b⊕ a)

= p1 ⊕ p2 ⊕ 0 (x⊕ x = 0)

= p1 ⊕ p2 (x⊕ 0 = x)

At first sight, that may not seem like an issue. To extract ei-
ther p1 or p2, youd̓ need to cancel out the XOR operation,
which means you need to know the other plaintext. The
problem is that even the result of the XOR operation on two
plaintexts contains quite a bit information about the plain-
texts themselves. Weʼll illustrate this visually with some im-
ages from a broken “one-time” pad process, starting with
Figure 5.1.

Crib-dragging

A classical approach to breaking multi-time pad systems in-
volves “crib-dragging”, a process that uses small sequences
that are expected to occur with high probability. Those se-
quences are called “cribs”. The name crib-dragging origi-
nated from the fact that these small “cribs” are dragged from
left to right across each ciphertext, and from top to bottom
across the ciphertexts, in the hope of finding a match some-
where. Those matches form the sites of the start, or “crib”,
if you will, of further decryption.

The idea is fairly simple. Suppose we have several en-
crypted messages Ci encrypted with the same “one-time”
pad K6. If we could correctly guess the plaintext for one of

6 We use capital letters when referring to an entire message, as op-
posed to just bits of a message.
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(a) First plaintext. (b) Second plaintext.

(c) First ciphertext. (d) Second ciphertext.

(e) Reused key. (f) XOR of ciphertexts.

Figure 5.1: Two plaintexts, the re-used key, their respective
ciphertexts, and the XOR of the ciphertexts. Information
about the plaintexts clearly leaks through when we XOR the
ciphertexts.
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the messages, let s̓ say Cj, we d̓ know K:

Cj ⊕ Pj = (Pj ⊕K)⊕ Pj

= K ⊕ Pj ⊕ Pj

= K ⊕ 0

= K

Since K is the shared secret, we can now use it to decrypt all
of the other messages, just as if we were the recipient:

Pi = Ci ⊕K for all i

Since we usually canʼt guess an entire message, this doesnʼt
actually work. However, we might be able to guess parts of
a message.

If we guess a few plaintext bits pi correctly for any of the
messages, that would reveal the key bits at that position for
all of the messages, since k = ci⊕ pi. Hence, all of the plain-
text bits at that position are revealed: using that value for k,
we can compute the plaintext bits pi = ci⊕k for all the other
messages.

Guessing parts of the plaintext is a lot easier than guess-
ing the entire plaintext. Suppose we know that the plaintext
is in English. There are some sequences that we know will
occur very commonly, for example (the ␣ symbol denotes a
space):

• ␣the␣ and variants such as .␣The␣

• ␣of␣ and variants

• ␣to␣ and variants

• ␣and␣ (no variants; only occurs in the middle of a sen-
tence)

• ␣a␣ and variants
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If we know more about the plaintext, we can make even
better guesses. For example, if it s̓ HTTP serving HTML, we
would expect to see things like Content-Type, <a>, and so
on.

That only tells us which plaintext sequences are likely,
giving us likely guesses. How do we tell if any of those
guesses are correct? If our guess is correct, we know all the
other plaintexts at that position as well, using the technique
described earlier. We could simply look at those plaintexts
and decide if they look correct.

In practice, this process needs to be automated because
there are so many possible guesses. Fortunately that s̓ quite
easy to do. For example, a very simple but effective method
is to count how often different symbols occur in the guessed
plaintexts: if the messages contain English text, we d̓ expect
to see a lot of letters e, t, a, o, i, n. If weʼre seeing binary
nonsense instead, we know that the guess was probably in-
correct, or perhaps that message is actually binary data.

These small, highly probable sequences are called
“cribs” because theyʼre the start of a larger decryption pro-
cess. Suppose your crib, the, was successful and found the
five-letter sequence t thr in another message. You can
then use a dictionary to find common words starting with
thr, such as through. If that guess were correct, it would
reveal four more bytes in all of the ciphertexts, which can
be used to reveal even more. Similarly, you can use the dic-
tionary to find words ending in t.

This becomes even more effective for some plaintexts
that we know more about. If some HTTP data has the
plaintext ent-Len in it, then we can expand that to
Content-Length:, revealing many more bytes.

While this technique works as soon as two messages are
encrypted with the same key, it s̓ clear that this becomes
even easier with more ciphertexts using the same key, since
all of the steps become more effective:

• We get more cribbing positions.
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• More plaintext bytes are revealed with each successful
crib and guess, leading to more guessing options else-
where.

• More ciphertexts are available for any given position,
making guess validation easier and sometimes more
accurate.

These are just simple ideas for breaking multi-time pads.
While theyʼre already quite effective, people have invented
even more effective methods by applying advanced, statis-
tical models based on natural language analysis. This only
demonstrates further just how broken multi-time pads are.
[MWES06]

5.6 Remaining problems

Real one-time pads, implemented properly, have an ex-
tremely strong security guarantee. It would appear, then,
that cryptography is over: encryption is a solved problem,
and we can all go home. Obviously, that s̓ not the case.

One-time pads are rarely used, because they are horri-
bly impractical: the key is at least as large as all informa-
tion youd̓ like to transmit, put together. Plus, youd̓ have to
exchange those keys securely, ahead of time, with all peo-
ple youd̓ like to communicate with. We d̓ like to communi-
cate securely with everyone on the Internet, and that s̓ a very
large number of people. Furthermore, since the keys have
to consist of truly random data for its security property to
hold, key generation is fairly difficult and time-consuming
without specialized hardware.

One-time pads pose a trade-off. It s̓ an algorithm with a
solid information-theoretic security guarantee, which you
can not get from any other system. On the other hand, it
also has extremely impractical key exchange requirements.
However, as weʼll see throughout this book, secure sym-
metric encryption algorithms arenʼt the pain point of mod-
ern cryptosystems. Cryptographers have designed plenty of
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those, while practical key management remains one of the
toughest challenges facing modern cryptography. One-time
pads may solve a problem, but it s̓ the wrong problem.

While they may have their uses, theyʼre obviously not a
panacea. We need something with manageable key sizes
while maintaining secrecy. We need ways to negotiate keys
over the Internet with people weʼve never met before.



6

Block ciphers

Few false ideas have more firmly gripped the
minds of so many intelligent men than the one
that, if they just tried, they could invent a cipher
that no one could break.

David Kahn

6.1 Description

A block cipher is an algorithm that encrypts blocks of a fixed
length. The encryption function E transforms plaintext
blocks P into ciphertext blocks C by using a secret key k:

C = E(k, P )

Plaintext and ciphertext blocks are sequences of bits and al-
ways match in size. The block cipher s̓ block size is a fixed
size. Keyspace is the set of all possible keys.

Once we encrypt plaintext blocks into ciphertext blocks,
they are later decrypted to recover original plaintext block.

28
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The original plaintext block P is produced using a decryp-
tion function D. It takes the ciphertext block C and the key
k (the same one used to encrypt the block) as inputs.

P = D(k,C)

Or, visually represented in blocks:

A block cipher is an example of a symmetric-key encryp-
tion scheme, also known as a secret-key encryption scheme.
The same secret key is used for both encryption and decryp-
tion. Later in the book, we contrast this with public-key en-
cryption algorithms, which have a distinct key for encryption
and decryption.

A block cipher is a keyed permutation. It is a permutation
because the block cipher maps each possible block to an-
other block. It is also a keyed permutation because the key
determines exactly which blocks map to which. It is impor-
tant for the block cipher to be a permutation because the
recipient must map blocks back to the original blocks.

We illustrate this by looking at a block cipher with an
impractical, tiny 4-bit block size. 24 = 16 possible blocks.
Since each of the blocks map to a hexadecimal digit, we rep-
resent the blocks by that digit. Figure 6.1 illustrates blocks
that the cipher operates on.

Once we select a secret key, the block cipher uses it to
determine the encryption of any given block. We illustrate
that relationship with an arrow. The tail of the arrow has
the block encrypted with E under key k and the arrowhead
is mapped to the block.

In Figure 6.2, note that the permutation is not just one
big cycle. It contains a large cycle of 7 elements, and several
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Figure 6.1: All 16 nodes operated on by the block cipher.
Each node is designated by a hexadecimal digit.

smaller cycles of 4, 3 and 2 elements each. It is also perfectly
possible that an element encrypts to itself. This is to be ex-
pected when selecting random permutations, which is ap-
proximately what a block cipher is doing; it doesnʼt demon-
strate a bug in the block cipher.

When you decrypt instead of encrypt, the block cipher
computes the inverse permutation. In Figure 6.3, we get the
same illustration. The difference between the illustrations
is that all arrowheads point in the opposite direction.

The key defines which blocks map to which blocks. A
different key would lead to a different set of arrows, as you
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Figure 6.2: An encryption permutation made by a block ci-
pher under a particular key k.

can see in Figure 6.4.
In this illustration, youʼll even notice that there are two

permutations of length 1: an element that maps to itself.
This is again something to be expected when selecting ran-
dom permutations.

Knowing a bunch of (input, output) pairs for a given key
shouldnʼt give you any information about any other (input,
output) pairs under that key1. As long as weʼre talking about
a hypothetical perfect block cipher, there s̓ no easier way to
decrypt a block other than to “brute-force” the key: i.e. just
try every single one of them until you find the right one.

1 The attentive reader may have noticed that this breaks in the ex-
tremes: if you know all but one of the pairs, then you know the last one
by exclusion.



CHAPTER 6. BLOCK CIPHERS 32

Figure 6.3: The decryption permutation produced by the
block cipher under the same key k. It is the inverse of the
encryption permutation in that all arrowheads reverse.

Our toy illustration block cipher only has 4 bit blocks, or
24 = 16 possibilities. Real, modern block ciphers have much
larger block sizes, such as 128 bits, or 2128 (slightly more than
1038.5) possible blocks. Mathematics tells us that there are
n! (pronounced “n factorial”) different permutations of an n
element set. It s̓ defined as the product of all of the numbers
from 1 up to and including n:

n! = 1 · 2 · 3 · . . . · (n− 1) · n

Factorials grow incredibly quickly. For example, 5! = 120,
10! = 3628800, and the rate continues to increase. The num-
ber of permutations of the set of blocks of a cipher with a 128
bit block size is (2128)!. Just 2128 is large already (it takes 39
digits to write it down), so (2128)! is a mind-bogglingly huge
number, impossible to comprehend. Common key sizes are
only in the range of 128 to 256 bits, so there are only between
2128 and 2256 permutations a cipher can perform. That s̓ just
a tiny fraction of all possible permutations of the blocks,
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Figure 6.4: An encryption permutation produced by the
block cipher under a different key.

but that s̓ okay: that tiny fraction is still nowhere near small
enough for an attacker to just try them all.

Of course, a block cipher should be as easy to compute
as possible, as long as it doesnʼt sacrifice any of the above
properties.

6.2 AES

The most common block cipher in current use is AES.
Contrary to its predecessor DES (which weʼll look at in

more detail in the next chapter), AES was selected through
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a public, peer-reviewed competition following an open call
for proposals. This competition involved several rounds
where all of the contestants were presented, subject to ex-
tensive cryptanalysis, and voted upon. The AES process was
well-received among cryptographers, and similar processes
are generally considered to be the preferred way to select
cryptographic standards.

Prior to being chosen as the Advanced Encryption Stan-
dard, the algorithm was known as Rijndael, a name derived
from the two last names of the Belgian cryptographers that
designed it: Vincent Rijmen and Joan Daemen. The Rijn-
dael algorithm defined a family of block ciphers, with block
sizes and key sizes that could be any multiple of 32 bits be-
tween 128 bits and 256 bits. [DR02] When Rijndael became
AES through the FIPS standardization process, the parame-
ters were restricted to a block size of 128 bits and keys sizes
of 128, 192 and 256 bits. [fip01]

There are no practical attacks known against AES. While
there have been some developments in the last few years,
most of them involve related-key attacks [BK09], some of
them only on reduced-round versions of AES [BDK+09].2

2 Symmetric algorithms usually rely on a round function to be re-
peated a number of times. Typically each invocation involves a “round
key” derived from the main key. A reduced-round version is intention-
ally easier to attack. These attacks can give insight as to how resistant the
full cipher is.

A related key attack involves making some predictions about how AES
will behave under several different keys with some specific mathemati-
cal relation. These relations are fairly simple, such as XORing with an
attacker-chosen constant. If an attacker is allowed to encrypt and decrypt
a large number of blocks with these related keys, they can attempt to re-
cover the original key with significantly less computation than would or-
dinarily be necessary to crack it.

While a theoretically ideal block cipher wouldnʼt be vulnerable to a
related key attack, these attacks arenʼt considered practical concerns.
In practice cryptographic keys are generated via a cryptographically se-
cure pseudorandom number generator, or a similarly secure key agree-
ment scheme or key derivation scheme (weʼll see more about those later).
Therefore, the odds of selecting two such related keys by accident is
nonexistent. These attacks are interesting from an academic perspec-
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A closer look at Rijndael

This is an optional, in-depth section. It
almost certainly wonʼt help you write bet-
ter software, so feel free to skip it. It is only
here to satisfy your inner geek s̓ curiosity.

AES consists of several independent steps. At a high level,
AES is a substitution-permutation network.

Key schedule

AES requires separate keys for each round in the next steps.
The key schedule is the process which AES uses to derive 128-
bit keys for each round from one master key.

First, the key is separated into 4 byte columns. The key
is rotated and then each byte is run through an S-box (sub-
stitution box) that maps it to something else. Each column
is then XORed with a round constant. The last step is to XOR
the result with the previous round key.

The other columns are then XORed with the previous
round key to produce the remaining columns.

SubBytes

SubBytes is the step that applies the S-box (substitution box)
in AES. The S-box itself substitutes a byte with another byte,
and this S-box is applied to each byte in the AES state.

It works by taking the multiplicative inverse over the Ga-
lois field, and then applying an affine transformation so that
there are no values x so that x⊕S(x) = 0 or x⊕S(x) = 0xff.
To rephrase: there are no values of x that the substitution
box maps to x itself, or x with all bits flipped. This makes

tive: they can help provide insight in the workings of the cipher, guiding
cryptographers in designing future ciphers and attacks against current
ciphers.
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the cipher resistant to linear cryptanalysis, unlike the ear-
lier DES algorithm, whose fifth S-box caused serious security
problems.3

ShiftRows

After having applied the SubBytes step to the 16 bytes of the
block, AES shifts the rows in the 4× 4 array:

3 In its defense, linear attacks were not publicly known back when
DES was designed.



CHAPTER 6. BLOCK CIPHERS 37

MixColumns

MixColumns multiplies each column of the state with a fixed
polynomial.

ShiftRows and MixColumns represent the diffusion prop-
erties of AES.

AddRoundKey

As the name implies, the AddRoundKey step adds the bytes
from the round key produced by the key schedule to the state
of the cipher.

6.3 DES and 3DES

The DES is one of the oldest block ciphers that saw
widespread use. It was published as an official FIPS standard
in 1977. It is no longer considered secure, mainly due to its
tiny key size of 56 bits. (The DES algorithm actually takes a 64
bit key input, but the remaining 8 bits are only used for par-
ity checking, and are discarded immediately.) It shouldnʼt
be used in new systems. On modern hardware, DES can be
brute forced in less than a day. [Gmb08]
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In an effort to extend the life of the DES algorithm, in a
way that allowed much of the spent hardware development
effort to be reused, people came up with 3DES: a scheme
where input is first encrypted, then decrypted, then en-
crypted again:

C = EDES(k1, DDES(k2, EDES(k3, p)))

This scheme provides two improvements:

• By applying the algorithm three times, the cipher be-
comes harder to attack directly through cryptanalysis.

• By having the option of using many more total key bits,
spread over the three keys, the set of all possible keys
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becomes much larger, making brute-forcing impracti-
cal.

The three keys could all be chosen independently (yield-
ing 168 key bits), or k3 = k1 (yielding 112 key bits), or
k1 = k2 = k3, which, of course, is just plain old DES (with 56
key bits). In the last keying option, the middle decryption
reverses the first encryption, so you really only get the ef-
fect of the last encryption. This is intended as a backwards
compatibility mode for existing DES systems. If 3DES had
been defined as E(k1, E(k2, E(k3, p))), it would have been
impossible to use 3DES implementations for systems that
required compatibility with DES. This is particularly impor-
tant for hardware implementations, where it is not always
possible to provide a secondary, regular “single DES” inter-
face next to the primary 3DES interface.

Some attacks on 3DES are known, reducing their effec-
tive security. While breaking 3DES with the first keying op-
tion is currently impractical, 3DES is a poor choice for any
modern cryptosystem. The security margin is already small,
and continues to shrink as cryptographic attacks improve
and processing power grows.

Far better alternatives, such as AES, are available. Not
only are they more secure than 3DES, they are also gener-
ally much, much faster. On the same hardware and in the
same mode of operation (weʼll explain what that means in the
next chapter), AES-128 only takes 12.6 cycles per byte, while
3DES takes up to 134.5 cycles per byte. [Dai] Despite being
worse from a security point of view, it is literally an order of
magnitude slower.

While more iterations of DES might increase the security
margin, they arenʼt used in practice. First of all, the process
has never been standardized beyond three iterations. Also,
the performance only becomes worse as you add more itera-
tions. Finally, increasing the key bits has diminishing secu-
rity returns, only increasing the security level of the result-
ing algorithm by a smaller amount as the number of key bits
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increases. While 3DES with keying option 1 has a key length
of 168 bits, the effective security level is estimated at only
112 bits.

Even though 3DES is significantly worse in terms of per-
formance and slightly worse in terms of security, 3DES is
still the workhorse of the financial industry. With a plethora
of standards already in existence and new ones continuing
to be created, in such an extremely technologically conser-
vative industry where Fortran and Cobol still reign supreme
on massive mainframes, it will probably continue to be used
for many years to come, unless there are some large crypt-
analytic breakthroughs that threaten the security of 3DES.

6.4 Remaining problems

Even with block ciphers, there are still some unsolved prob-
lems.

For example, we can only send messages of a very lim-
ited length: the block length of the block cipher. Obviously,
we d̓ like to be able to send much larger messages, or, ideally,
streams of indeterminate size. Weʼll address this problem
with a stream cipher (page 41).

Although we have reduced the key size drastically (from
the total size of all data ever sent under a one-time pad
scheme versus a few bytes for most block ciphers), we still
need to address the issue of agreeing on those few key
bytes, potentially over an insecure channel. Weʼll address
this problem in a later chapter with a key exchange protocol
(page 81).
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Stream ciphers

7.1 Description

A stream cipher is a symmetric-key encryption algorithm that
encrypts a stream of bits. Ideally, that stream could be as
long as we d̓ like; real-world stream ciphers have limits, but
they are normally sufficiently large that they donʼt pose a
practical problem.

7.2 A naive attempt with block ciphers

Let s̓ try to build a stream cipher using the tools we already
have. Since we already have block ciphers, we could simply
divide an incoming stream into different blocks, and encrypt
each block:

abcdefgh︸ ︷︷ ︸ ijklmno︸ ︷︷ ︸ pqrstuvw︸ ︷︷ ︸ ...

↓ ↓ ↓︷ ︸︸ ︷
APOHGMMW

︷ ︸︸ ︷
PVMEHQOM

︷ ︸︸ ︷
MEEZSNFM ...

This scheme is called ECB mode (Electronic Code Book
Mode), and it is one of the many ways that block ciphers can

41
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be used to construct stream ciphers. Unfortunately, while
being very common in home-grown cryptosystems, it poses
very serious security flaws. For example, in ECB mode, iden-
tical input blocks will always map to identical output blocks:

abcdefgh︸ ︷︷ ︸ abcdefgh︸ ︷︷ ︸ abcdefgh︸ ︷︷ ︸ ...

↓ ↓ ↓︷ ︸︸ ︷
APOHGMMW

︷ ︸︸ ︷
APOHGMMW

︷ ︸︸ ︷
APOHGMMW ...

At first, this might not seem like a particularly serious prob-
lem. Assuming the block cipher is secure, it doesnʼt look like
an attacker would be able to decrypt anything. By dividing
the ciphertext stream up into blocks, an attacker would only
be able to see that a ciphertext block, and therefore a plain-
text block, was repeated.

Weʼll now illustrate the many flaws of ECBmode with two
attacks. First, weʼll exploit the fact that repeating plaintext
blocks result in repeating ciphertext blocks, by visually in-
specting an encrypted image. Then, weʼll demonstrate that
attackers can often decrypt messages encrypted in ECBmode
by communicating with the person performing the encryp-
tion.

Visual inspection of an encrypted stream

To demonstrate that this is, in fact, a serious problem, weʼll
use a simulated block cipher of various block sizes and ap-
ply it to an image1. Weʼll then visually inspect the different
outputs.

Because identical blocks of pixels in the plaintext will
map to identical blocks of pixels in the ciphertext, the global
structure of the image is largely preserved.

As you can see, the situation appears to get slightly better
with larger block sizes, but the fundamental problem still re-
mains: the macrostructure of the image remains visible in

1 This particular demonstration only works on uncompressed
bitmaps. For other media, the effect isnʼt significantly less damning: it s̓
just less visual.
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(a) Plaintext image, 2000 by
1400 pixels, 24 bit color depth.

(b) ECB mode ciphertext, 5 pixel
(120 bit) block size.

(c) ECB mode ciphertext, 30 pixel
(720 bit) block size.

(d) ECB mode ciphertext, 100
pixel (2400 bit) block size.

(e) ECB mode ciphertext, 400
pixel (9600 bit) block size.

(f) Ciphertext under idealized
encryption.

Figure 7.1: Plaintext image with ciphertext images under
idealized encryption and ECB mode encryption with various
block sizes. Information about the macro-structure of the
image clearly leaks. This becomes less apparent as block
sizes increase, but only at block sizes far larger than typical
block ciphers. Only the first block size (Figure 7.1f, a block
size of 5 pixels or 120 bits) is realistic.
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all but the most extreme block sizes. Furthermore, all but
the smallest of these block sizes are unrealistically large. For
an uncompressed bitmap with three color channels of 8 bit
depth, each pixel takes 24 bits to store. Since the block size
of AES is only 128 bits, that would equate to 128

24 or just over 5
pixels per block. That s̓ significantly fewer pixels per block
than the larger block sizes in the example. But AES is the
workhorse of modern block ciphers—it canʼt be at fault, cer-
tainly not because of an insufficient block size.

When we look at a picture of what would happen with an
idealized encryption scheme, we notice that it looks like ran-
dom noise. Keep in mind that “looking like random noise”
doesnʼt mean something is properly encrypted: it just means
that we canʼt inspect it using methods this trivial.

Encryption oracle attack

In the previous section, weʼve focused on how an attacker
can inspect a ciphertext encrypted using ECB mode. That s̓
a passive, ciphertext-only attack. It s̓ passive because the
attacker doesnʼt really interfere in any communication;
theyʼre simply examining a ciphertext. In this section, weʼll
study a different, active attack, where the attacker actively
communicates with their target. Weʼll see how the active at-
tack can enable an attacker to decrypt ciphertexts encrypted
using ECB mode.

To do this, weʼll introduce a new concept called an oracle.
Formally defined oracles are used in the study of computer
science, but for our purposes it s̓ sufficient to just say that an
oracle is something that will compute some particular func-
tion for you.

In our case, the oracle will perform a specific encryption
for the attacker, which is why it s̓ called an encryption oracle.
Given some data A chosen by the attacker, the oracle will en-
crypt that data, followed by a secret suffix S, in ECB mode.
Or, in symbols:

C = ECB(Ek, A∥S)
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The secret suffix S is specific to this system. The attacker s̓
goal is to decrypt it. Weʼll see that being able to encrypt other
messages surprisingly allows the attacker to decrypt the suf-
fix. This oracle might seem artificial, but is quite common
in practice. A simple example would be a cookie encrypted
with ECB, where the prefix A is a name or an e-mail address
field, controlled by the attacker.

You can see why the concept of an oracle is important
here: the attacker would not be able to compute C them-
selves, since they do not have access to the encryption key
k or the secret suffix S. The goal of the oracle is for those
values to remain secret, but weʼll see how an attacker will
be able to recover the secret suffix S (but not the key k) any-
way. The attacker does this by inspecting the ciphertext C
for many carefully chosen values of the attacker-chosen pre-
fix A.

Assuming that an attacker would have access to such an
oracle might seem like a very artificial scenario. It turns out
that in practice, a lot of software can be tricked into behaving
like one. Even if an attacker canʼt control the real software
as precisely as they can query an oracle, the attacker gen-
erally isnʼt thwarted. Time is on their side: they only have
to convince the software to give the answer they want once.
Systems where part of the message is secret and part of the
message can be influenced by the attacker are actually very
common, and, unfortunately, so is ECB mode.

Decrypting a block using the oracle

The attacker starts by sending in a plaintext A that s̓ just
one byte shorter than the block size. That means the block
that s̓ being encrypted will consist of those bytes, plus the
first byte of S, which weʼll call s0. The attacker remembers
the encrypted block. They donʼt know the value of s0 yet,
but now they do know the value of the first encrypted block:
Ek(A∥s0). In the illustration, this is block CR1:

Then, the attacker tries a full-size block, trying all pos-
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sible values for the final byte. Eventually, theyʼll find the
value of s0; they know the guess is correct because the re-
sulting ciphertext block will match the ciphertext block CR1

they remembered earlier.

The attacker can repeat this for the penultimate byte.
They submit a plaintext A that s̓ two bytes shorter than the
block size. The oracle will encrypt a first block consisting of
thatA followed by the first two bytes of the secret suffix, s0s1.
The attacker remembers that block.

Since the attacker already knows s0, they try A∥s0 fol-
lowed by all possible values of s1. Eventually theyʼll guess
correctly, which, again, theyʼll know because the ciphertext
blocks match:

The attacker can then rinse and repeat, eventually de-
crypting an entire block. This allows them to brute-force a
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block in p · b attempts, where p is the number of possible val-
ues for each byte (so, for 8-bit bytes, that s̓ 28 = 256) and b
is the block size. This is much better than a regular brute-
force attack, where an attacker has to try all of the possible
blocks, which would be:

p · p . . . · p︸ ︷︷ ︸
b positions

= pb

For a typical block size of 16 bytes (or 128 bits), brute forc-
ing would mean trying 25616 combinations. That s̓ a huge,
39-digit number. It s̓ so large that trying all of those combi-
nations is considered impossible. An ECB encryption oracle
allows an attacker to do it in at most 256 · 16 = 4096 tries, a
far more manageable number.
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Conclusion

In the real world, block ciphers are used in systems that en-
crypt large amounts of data all the time. Weʼve seen that
when using ECB mode, an attacker can both analyze cipher-
texts to recognize repeating patterns, and even decrypt mes-
sages when given access to an encryption oracle.

Even when we use idealized block ciphers with unrealis-
tic properties, such as block sizes of more than a thousand
bits, an attacker ends up being able to decrypt the cipher-
texts. Real world block ciphers only have more limitations
than our idealized examples, such as much smaller block
sizes.

We arenʼt even taking into account any potential weak-
nesses in the block cipher. It s̓ not AES (or our test block
ciphers) that cause this problem, it s̓ our ECB construction.
Clearly, we need something better.

7.3 Block cipher modes of operation

One of the more common ways of producing a stream cipher
is to use a block cipher in a particular configuration. The
compound system behaves like a stream cipher. These con-
figurations are commonly called mode of operations. They
arenʼt specific to a particular block cipher.

ECB mode, which weʼve just seen, is the simplest such
mode of operation. The letters ECB stand for electronic code
book2. For reasons weʼve already gone into, ECBmode is very
ineffective. Fortunately, there are plenty of other choices.

7.4 CBCmode

CBC mode, which stands for cipher block chaining, is a very
common mode of operation where plaintext blocks are XORed

2 Traditionally, modes of operation seem to be referred to by a three-
letter acronym.
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with the previous ciphertext block before being encrypted
by the block cipher.

Of course, this leaves us with a problem for the first plain-
text block: there is no previous ciphertext block to XOR it
with. Instead, we pick an IV: a random number that takes
the place of the “first” ciphertext in this construction. initial-
ization vectors also appear in many other algorithms. An ini-
tialization vector should be unpredictable; ideally, they will
be cryptographically random. They do not have to be secret:
IVs are typically just added to ciphertext messages in plain-
text. It may sound contradictory that something has to be
unpredictable, but doesnʼt have to be secret; it s̓ important to
remember that an attacker must not be able to predict ahead
of time what a given IV will be. We will illustrate this later
with an attack on predictable CBC IVs.

The following diagram demonstrates encryption in CBC
mode:
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Decryption is the inverse construction, with block ci-
phers in decryption mode instead of encryption mode:

While CBC mode itself is not inherently insecure (unlike
ECB mode), its particular use in TLS 1.0 was. This eventu-
ally led to the BEAST attack, which weʼll cover in more detail
in the section on SSL/TLS. The short version is that instead
of using unpredictable initialization vectors, for example by
choosing random IVs, the standard used the previous cipher-
text block as the IV for the next message. Unfortunately, it
turns out that attackers figured out how to exploit that prop-
erty.

7.5 Attacks on CBC mode with predictable
IVs

Suppose there s̓ a database that stores secret user informa-
tion, like medical, payroll or even criminal records. In or-
der to protect that information, the server that handles it
encrypts it using a strong block cipher in CBC mode with a
fixed key. For now, weʼll assume that that server is secure,
and there s̓ no way to get it to leak the key.
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Mallory gets a hold of all of the rows in the database.
Perhaps she did it through a SQL injection attack, or maybe
with a little social engineering.3 Everything is supposed to
remain secure: Mallory only has the ciphertexts, but she
doesnʼt have the secret key.

Mallory wants to figure out what Alice s̓ record says. For
simplicity s̓ sake, let s̓ say there s̓ only one ciphertext block.
That means Alice s̓ ciphertext consists of an IV and one ci-
phertext block.

Mallory can still try to use the application as a normal
user, meaning that the application will encrypt some data of
Mallory s̓ choosing and write it to the database. Suppose that
through a bug in the server, Mallory can predict the IV that
will be used for her ciphertext. Perhaps the server always
uses the same IV for the same person, or always uses an all-
zero IV, or…

Mallory can construct her plaintext using Alice s̓ IV IVA

(which Mallory can see) and her own predicted IV IVM . She
makes a guess G as to what Alice s̓ data could be. She asks
the server to encrypt:

PM = IVM ⊕ IVA ⊕G

The server dutifully encrypts that message using the pre-
dicted IV IVM . It computes:

CM = E(k, IVM ⊕ PM )

= E(k, IVM ⊕ (IVM ⊕ IVA ⊕G))

= E(k, IVA ⊕G)

That ciphertext, CM, is exactly the ciphertext block Alice
would have had if her plaintext block was G. So, depending
on what the data is, Mallory has figured out if Alice has a

3 Social engineering means tricking people into things they shouldnʼt
be doing, like giving out secret keys, or performing certain operations.
It s̓ usually the most effective way to break otherwise secure cryptosys-
tems.
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criminal record or not, or perhaps some kind of embarrass-
ing disease, or some other issue that Alice really expected
the server to keep secret.

Lessons learned: donʼt let IVs be predictable. Also, donʼt
roll your own cryptosystems. In a secure system, Alice and
Mallory s̓ records probably wouldnʼt be encrypted using the
same key.

7.6 Attacks onCBCmodewith the key as the
IV

Many CBC systems set the key as the initialization vector.
This seems like a good idea: you always need a shared se-
cret key already anyway. It yields a nice performance ben-
efit, because the sender and the receiver donʼt have to com-
municate the IV explicitly, they already know the key (and
therefore the IV) ahead of time. Plus, the key is definitely
unpredictable because it s̓ secret: if it were predictable, the
attacker could just predict the key directly and already have
won. Conveniently, many block ciphers have block sizes
that are the same length or less than the key size, so the key
is big enough.

This setup is completely insecure. If Alice sends a mes-
sage to Bob, Mallory, an active adversary who can intercept
and modify the message, can perform a chosen ciphertext
attack to recover the key.

Alice turns her plaintext message P into three blocks
P1P2P3 and encrypts it in CBC mode with the secret key k
and also uses k as the IV. She gets a three block ciphertext
C = C1C2C3, which she sends to Bob.

Before the message reaches Bob, Mallory intercepts it.
She modifies the message to be C ′ = C1ZC1, where Z is a
block filled with null bytes (value zero).

Bob decrypts C ′, and gets the three plaintext blocks
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P ′
1, P

′
2, P

′
3:

P ′
1 = D(k,C1)⊕ IV

= D(k,C1)⊕ k

= P1

P ′
2 = D(k, Z)⊕ C1

= R

P ′
3 = D(k,C1)⊕ Z

= D(k,C1)

= P1 ⊕ IV

R is some random block. Its value doesnʼt matter.
Under the chosen-ciphertext attack assumption, Mallory

recovers that decryption. She is only interested in the first
block (P ′

1 = P1) and the third block (P ′
3 = P1 ⊕ IV ). By

XORing those two together, she finds (P1 ⊕ IV ) ⊕ P1 = IV .
But, the IV is the key, so Mallory successfully recovered the
key by modifying a single message.

Lesson learned: donʼt use the key as an IV. Part of the fal-
lacy in the introduction is that it assumed secret data could
be used for the IV, because it only had to be unpredictable.
That s̓ not true: “secret” is just a different requirement from
“not secret”, not necessarily a stronger one. It is not gener-
ally okay to use secret information where it isnʼt required,
precisely because if it s̓ not supposed to be secret, the algo-
rithm may very well treat it as non-secret, as is the case here.
There are plenty of systems where it is okay to use a secret
where it isnʼt required. In some cases you might even get
a stronger system as a result, but the point is that it is not
generally true, and depends on what youʼre doing.

7.7 CBC bit flipping attacks

An interesting attack on CBC mode is called a bit flipping at-
tack. Using a CBC bit flipping attack, attackers can modify
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ciphertexts encrypted in CBC mode so that it will have a pre-
dictable effect on the plaintext.

This may seem like a very strange definition of “attack”
at first. The attacker will not even attempt to decrypt any
messages, but they will just be flipping some bits in a plain-
text. We will demonstrate that the attacker can turn the abil-
ity to flip some bits in the plaintext into the ability to have
the plaintext say whatever they want it to say, and, of course,
that can lead to very serious problems in real systems.

Suppose we have a CBC encrypted ciphertext. This could
be, for example, a cookie. We take a particular ciphertext
block, and we flip some bits in it. What happens to the plain-
text?

When we “flip some bits”, we do that by XORing with a
sequence of bits, which weʼll call X. If the corresponding
bit in X is 1, the bit will be flipped; otherwise, the bit will
remain the same.

When we try to decrypt the ciphertext block with the
flipped bits, we will get indecipherable4 nonsense. Remem-

4 Excuse the pun.
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ber how CBC decryption works: the output of the block ci-
pher is XORed with the previous ciphertext block to produce
the plaintext block. Now that the input ciphertext block Ci

has been modified, the output of the block cipher will be
some random unrelated block, and, statistically speaking,
nonsense. After being XORed with that previous ciphertext
block, it will still be nonsense. As a result, the produced
plaintext block is still just nonsense. In the illustration, this
unintelligible plaintext block is P ′

i .
However, in the block after that, the bits we flipped in the

ciphertext will be flipped in the plaintext as well! This is be-
cause, in CBC decryption, ciphertext blocks are decrypted
by the block cipher, and the result is XORed with the previ-
ous ciphertext block. But since we modified the previous ci-
phertext block by XORing it with X, the plaintext block Pi+1

will also be XORed with X. As a result, the attacker com-
pletely controls that plaintext block Pi+1, since they can just
flip the bits that arenʼt the value they want them to be.

TODO: add previous illustration, but mark the path X
takes to influence P prime {i + 1} in red or something

This may not sound like a huge deal at first. If you donʼt
know the plaintext bytes of that next block, you have no idea
which bits to flip in order to get the plaintext you want.

To illustrate how attackers can turn this into a practical
attack, let s̓ consider a website using cookies. When you reg-
ister, your chosen user name is put into a cookie. The web-
site encrypts the cookie and sends it to your browser. The
next time your browser visits the website, it will provide the
encrypted cookie; the website decrypts it and knows who
you are.

An attacker can often control at least part of the plaintext
being encrypted. In this example, the user name is part of
the plaintext of the cookie. Of course, the website just lets
you provide whatever value for the user name you want at
registration, so the attacker can just add a very long string
of Z bytes to their user name. The server will happily en-
crypt such a cookie, giving the attacker an encrypted cipher-
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text that matches a plaintext with many suchZbytes in them.
The plaintext getting modified will then probably be part of
that sequence of Z bytes.

An attacker may have some target bytes that they d̓ like
to see in the decrypted plaintext, for example, ;admin=1;.
In order to figure out which bytes they should flip (so, the
value of X in the illustration), they just XOR the filler bytes
(~ZZZ~…) with that target. Because two XOR operations with
the same value cancel each other out, the two filler values
(~ZZZ~…) will cancel out, and the attacker can expect to see
;admin=1; pop up in the next plaintext block:

P ′
i+1 = Pi+1 ⊕X

= Pi+1 ⊕ ZZZZZZZZZ⊕ ;admin = 1;
= ZZZZZZZZZ⊕ ZZZZZZZZZ⊕ ;admin = 1;
= ;admin = 1;

This attack is another demonstration of an important crypto-
graphic principle: encryption is not authentication! It s̓ vir-
tually never sufficient to simply encrypt a message. It may
prevent an attacker from reading it, but that s̓ often not even
necessary for the attacker to be able to modify it to say what-
ever they want it to. This particular problem would be solved
by also securely authenticating the message. Weʼll see how
you can do that later in the book; for now, just remember
that weʼre going to need authentication in order to produce
secure cryptosystems.

7.8 Padding

So far, weʼve conveniently assumed that all messages just
happened to fit exactly in our system of block ciphers, be
it CBC or ECB. That means that all messages happen to be
a multiple of the block size, which, in a typical block cipher
such as AES, is 16 bytes. Of course, real messages can be of
arbitrary length. We need some scheme to make them fit.
That process is called padding.
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Padding with zeroes (or some other pad byte)

One way to pad would be to simply append a particular byte
value until the plaintext is of the appropriate length. To undo
the padding, you just remove those bytes. This scheme has
an obvious flaw: you canʼt send messages that end in that
particular byte value, or you will be unable to distinguish
between padding and the actual message.

PKCS#5/PKCS#7 padding

A better, and much more popular scheme, is PKCS#5/PKCS#7
padding.

PKCS#5, PKCS#7 and later CMS padding are all more or
less the same idea5. Take the number of bytes you have to
pad, and pad them with that many times the byte with that
value. For example, if the block size is 8 bytes, and the last
block has the three bytes 12 34 45, the block becomes 12
34 45 05 05 05 05 05 after padding.

If the plaintext happened to be exactly a multiple of the
block size, an entire block of padding is used. Otherwise, the
recipient would look at the last byte of the plaintext, treat it
as a padding length, and almost certainly conclude the mes-
sage was improperly padded.

This scheme is described in [Hou].

7.9 CBC padding attacks

We can refine CBC bit flipping attacks to trick a recipient into
decrypting arbitrary messages!

As weʼve just discussed, CBC mode requires padding the
message to a multiple of the block size. If the padding is in-
correct, the recipient typically rejects the message, saying

5 Technically, PKCS#5 padding is only defined for 8 byte block sizes,
but the idea clearly generalizes easily, and it s̓ also the most commonly
used term.
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that the padding was invalid. We can use that tiny bit of in-
formation about the padding of the plaintext to iteratively
decrypt the entire message.

The attacker will do this, one ciphertext block at a time,
by trying to get an entire plaintext block worth of valid
padding. Weʼll see that this tells them the decryption of their
target ciphertext block, under the block cipher. Weʼll also
see that you can do this efficiently and iteratively, just from
that little leak of information about the padding being valid
or not.

It may be helpful to keep in mind that a CBC padding
attack does not actually attack the padding for a given mes-
sage; instead the attacker will be constructing paddings to de-
crypt a message.

To mount this attack, an attacker only needs two things:

1. A target ciphertext to decrypt

2. A padding oracle: a function that takes ciphertexts and
tells the attacker if the padding was correct

As with the ECB encryption oracle, the availability of a
padding oracle may sound like a very unrealistic assump-
tion. The massive impact of this attack proves otherwise.
For a long time, most systems did not even attempt to hide
if the padding was valid or not. This attack remained dan-
gerous for a long time after it was originally discovered, be-
cause it turns out that in many systems it is extremely diffi-
cult to actually hide if padding is valid or not. We will go into
this problem in more detail both in this chapter and in later
chapters.

In this chapter, weʼll assume that PKCS#5/PKCS#7
padding is being used, since that s̓ the most popular op-
tion. The attack is general enough to work on other kinds
of padding, with minor modifications.
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Decrypting the first byte

The attacker fills a block with arbitrary bytesR = r1, r2 . . . rb.
They also pick a target block Ci from the ciphertext that
they d̓ like to decrypt. The attacker asks the padding ora-
cle if the plaintext of R∥Ci has valid padding. Statistically
speaking, such a random plaintext probably wonʼt have valid
padding: the odds are in the half-a-percent ballpark. If
by pure chance the message happens to already have valid
padding, the attacker can simply skip the next step.

Next, the attacker tries to modify the message so that it
does have valid padding. They can do that by indirectly mod-
ifying the last byte of the plaintext: eventually that byte will
be 01, which is always valid padding. In order to modify the
last byte of a plaintext block, the attacker modifies the last
byte of the previous ciphertext block. This works exactly like
it did with CBC bit flipping attacks. That previous ciphertext
block is the block R, so the byte being modified is the last
byte of R, rb.

The attacker tries all possible values for that last byte.
There are several ways of doing that: modular addition, XOR-
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ing it with all values up to 256, or even picking randomly; the
only thing that matters is that the attacker tries all of them.
Eventually, the padding oracle will report that for some ci-
phertext block R, the decrypted plaintext of R∥Ci has valid
padding.

Discovering the padding length

The oracle has just told the attacker that for our chosen value
of R, the plaintext of R∥Ci has valid padding. Since weʼre
working with PKCS#5 padding, that means that the plaintext
block Pi ends in one of the following byte sequences:

• 01

• 02 02

• 03 03 03

• …

The first option (01) is much more likely than the others,
since it only requires one byte to have a particular value. The
attacker is modifying that byte to take every possible value,
so it is quite likely that they happened to stumble upon 01.
All of the other valid padding options not only require that
byte to have some particular value, but also one or more
other bytes. For an attacker to be guaranteed a message with
a valid 01 padding, they just have to try every possible byte.
For an attacker to end up with a message with a valid 02 02
padding, they have to try every possible byte and happen to
have picked a combination of C and R that causes the plain-
text to have a02 in that second-to-last position. (To rephrase:
the second-to-last byte of the decryption of the ciphertext
block, XORed with the second-to-last byte of R, is 02.)

In order to successfully decrypt the message, we still
need to figure out which one of those options is the actual
value of the padding. To do that, we try to discover the length
of the padding by modifying bytes starting at the left-hand
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side of Pi until the padding becomes invalid again. As with
everything else in this attack, we modify those bytes in Pi by
modifying the equivalent bytes in our chosen block R. As
soon as padding breaks, you know that the last byte you mod-
ified was part of the valid padding, which tells you how many
padding bytes there are. Since weʼre using PKCS#5 padding,
that also tells you what their value is.

Let s̓ illustrate this with an example. Suppose weʼve suc-
cessfully found some block R so that the plaintext of R∥Ci

has valid padding. Let s̓ say that padding is 03 03 03. Nor-
mally, the attacker wouldnʼt know this; the point of this pro-
cedure is to discover what that padding is. Suppose the block
size is 8 bytes. So, we (but not the attacker) know that Pi is
currently:

p0p1p2p3p4030303

In that equation, p0 . . . are some bytes of the plaintext. Their
actual value doesnʼt matter: the only thing that matters is
that theyʼre not part of the padding. When we modify the
first byte of R, weʼll cause a change in the first byte of Pi, so
that p0 becomes some other byte p′0:

p′0p1p2p3p4030303

As you can see, this doesnʼt affect the validity of the padding.
It also does not affect p1, p2, p3 or p4. However, when we
continue modifying subsequent bytes, we will eventually hit
a byte that is part of the padding. For example, let s̓ say we
turn that first 03 into 02 by modifying R. Pi now looks like
this:

p′0p
′
1p

′
2p

′
3p

′
4020303

Since 02 03 03 isnʼt valid PKCS#5 padding, the server will
reject the message. At that point, we know that once we mod-
ify six bytes, the padding breaks. That means the sixth byte
is the first byte of the padding. Since the block is 8 bytes long,
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we know that the padding consists of the sixth, seventh and
eighth bytes. So, the padding is three bytes long, and, in
PKCS#5, equal to 03 03 03.

A clever attacker whos̓ trying to minimize the number
of oracle queries can leverage the fact that longer valid
padding becomes progressively more rare. They can do
this by starting from the penultimate byte instead of the
beginning of the block. The advantage to this method is
that short paddings (which are more common) are detected
more quickly. For example, if the padding is 0x01 and an at-
tacker starts modifying the penultimate byte, they only need
one query to learn what the padding was. If the penultimate
byte is changed to any other value and the padding is still
valid, the padding must be 0x01. If the padding is not valid,
the padding must be at least 0x02 0x02. So, they go back
to the original block and start modifying the third byte from
the back. If that passes, the padding was indeed0x02 0x02,
otherwise the padding must be at least 0x03 0x03 0x03.
The process repeats until theyʼve found the correct length.
This is a little trickier to implement; you canʼt just keep mod-
ifying the same block (if it s̓ mutable), and youʼre waiting for
the oracle to fail instead of pass, which can be confusing.
But other than being faster at the cost of being slightly more
complex, this technique is equivalent to the one described
above.

For the next section, weʼll assume that it was just 01,
since that is the most common case. The attack doesnʼt re-
ally change depending on the length of the padding. If you
guess more bytes of padding correctly, that just means that
there are fewer remaining bytes you will have to guess man-
ually. (This will become clear once you understand the rest
of the attack.)

Decrypting one byte

At this point, the attacker has already successfully decrypted
the last byte of the target block of ciphertext! Actually, weʼve
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decrypted as many bytes as we have valid padding; weʼre just
assuming the worst case scenario where there is only a sin-
gle byte. How? The attacker knows that the last byte of the
decrypted ciphertext block Ci (weʼll call that byte D(Ci)[b]),
XORed with the iteratively found value rb, is 01:

D(Ci)[b]⊕ rb = 01

By moving the XOR operation to the other side, the attacker
gets:

D(Ci)[b] = 01⊕ rb

The attacker has now tricked the receiver into revealing the
value of the last byte of the block cipher decryption of Ci.

Decrypting subsequent bytes

Next, the attacker tricks the receiver into decrypting the next
byte. Remember the previous equation, where we reasoned
that the last byte of the plaintext was 01:

D(Ci)[b]⊕ rb = 01

Now, we d̓ like to get that byte to say 02, to produce an al-
most valid padding: the last byte would be correct for a 2-
byte PKCS#5 padding (02 02), but that second-to-last byte
probably isnʼt 02 yet. To do that, we XOR with 01 to cancel
the 01 that s̓ already there (since two XORs with the same
value cancel each other out), and then we XOR with 02 to
get 02:

D(Ci)[b]⊕ rb ⊕ 01⊕ 02 = 01⊕ 01⊕ 02
= 02

So, to produce a value of 02 in the final position of the de-
crypted plaintext, the attacker replaces rb with:

r′b = rb ⊕ 01⊕ 02
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This accomplishes the goal of almost valid padding. Then,
they try all possible values for the second-to-last byte (index
b − 1). Eventually, one of them will cause the message to
have valid padding. Since we modified the random block so
that the final byte of the plaintext will be 02, the only byte
in the second-to-last position that can cause valid padding is
02 as well. Using the same math as above, the attacker has
recovered the second-to-last byte.

Then, it s̓ just rinse and repeat. The last two bytes are
modified to create an almost-valid padding of 03 03, then
the third byte from the right is modified until the padding is
valid, and so on. Repeating this for all the bytes in the block
means the attacker can decrypt the entire block; repeating
it for different blocks means the attacker can read the entire
message.

This attack has proven to be very subtle and hard to fix.
First of all, messages should be authenticated, as well as en-
crypted. That would cause modified messages to be rejected.
However, many systems decrypt (and remove padding) be-
fore authenticating the message; so the information about
the padding being valid or not has already leaked. We will
discuss secure ways of authenticating messages later in the
book.

You might consider just getting rid of the “invalid
padding” message; declaring the message invalid without
specifying why it was invalid. That turns out to only be a
partial solution for systems that decrypt before authenticat-
ing. Those systems would typically reject messages with
an invalid padding slightly faster than messages with a valid
padding. After all, they didnʼt have to do the authentication
step: if the padding is invalid, the message canʼt possibly be
valid. An attack that leaks secret information through timing
differences is called a timing attack, which is a special case
of a side-channel attack: attacks on the practical implementa-
tion of a cryptosystem rather than its “perfect” abstract rep-
resentation. We will talk about these kinds of attacks more
later in the book.
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That discrepancy was commonly exploited as well. By
measuring how long it takes the recipient to reject the mes-
sage, the attacker can tell if the recipient performed the au-
thentication step. That tells them if the padding was correct
or not, providing the padding oracle to complete the attack.

The principal lesson learned here is, again, not to design
your own cryptosystems. The main way to avoid this partic-
ular problem is by performing constant time authentication,
and authenticating the ciphertext before decrypting it. We
will talk more about this in a later chapter on message au-
thentication.

7.10 Native stream ciphers

In addition to block ciphers being used in a particular mode
of operation, there are also “native” stream ciphers algorithms
that are designed from the ground up to be a stream cipher.

The most common type of stream cipher is called a syn-
chronous stream cipher. These algorithms produce a long
stream of pseudorandom bits from a secret symmetric key.
This stream, called the keystream, is then XORed with the
plaintext to produce the ciphertext. Decryption is the iden-
tical operation as encryption, just repeated: the keystream
is produced from the key, and is XORed with the ciphertext
to produce the plaintext.

You can see how this construction looks quite similar to
a one-time pad, except that the truly random one-time pad
has been replaced by a pseudorandom stream cipher.
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There are also asynchronous or self-synchronizing stream
ciphers, where the previously produced ciphertext bits are
used to produce the current keystream bit. This has the in-
teresting consequence that a receiver can eventually recover
if some ciphertext bits are dropped. This is generally not
considered to be a desirable property anymore in modern
cryptosystems, which instead prefer to send complete, au-
thenticated messages. As a result, these stream ciphers are
very rare, and we donʼt talk about them explicitly in this
book. Whenever someone says “stream cipher”, it s̓ safe to
assume they mean the synchronous kind.

Historically, native stream ciphers have had their issues.
NESSIE, an international competition for new cryptographic
primitives, for example, did not result in any new stream ci-
phers, because all of the participants were broken before the
competition ended. RC4, one of the most popular native
stream ciphers, has had serious known issues for years. By
comparison, some of the constructions using block ciphers
seem bulletproof.

Fortunately, more recently, several new cipher algo-
rithms provide new hope that we can get practical, secure
and performant stream ciphers.

7.11 RC4

By far the most common native stream cipher in common use
on desktop and mobile devices is RC4.

RC4 is sometimes also called ARCFOUR or ARC4, which
stands for alleged RC4. While its source code has been leaked
and its implementation is now well-known, RSA Security
(the company that authored RC4 and still holds the RC4
trademark) has never acknowledged that it is the real algo-
rithm.

It quickly became popular because it s̓ very simple and
very fast. It s̓ not just extremely simple to implement, it s̓
also extremely simple to apply. Being a synchronous stream
cipher, there s̓ little that can go wrong; with a block cipher,
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youd̓ have to worry about things like modes of operation
and padding. Clocking in at around 13.9 cycles per byte, it s̓
comparable to AES-128 in CTR (12.6 cycles per byte) or CBC
(16.0 cycles per byte) modes. AES came out a few years after
RC4; when RC4 was designed, the state of the art was 3DES,
which was excruciatingly slow by comparison (134.5 cycles
per byte in CTR mode). [Dai]

An in-depth look at RC4

This is an optional, in-depth section. It
almost certainly wonʼt help you write bet-
ter software, so feel free to skip it. It is only
here to satisfy your inner geek s̓ curiosity.

On the other hand, RC4 is incredibly simple, and it may be
worth skimming this section.

RC4 is, unfortunately, quite broken. To better under-
stand just how broken, weʼll take a look at how RC4 works.
The description requires understanding modular addition;
if you arenʼt familiar with it, you may want to review the ap-
pendix on modular addition (page 186).

Everything in RC4 revolves around a state array and two
indexes into that array. The array consists of 256 bytes form-
ing a permutation: that is, all possible index values occur ex-
actly once as a value in the array. That means it maps ev-
ery possible byte value to every possible byte value: usually
different, but sometimes the same one. We know that it s̓ a
permutation because S starts as one, and all operations that
modify S always swap values, which obviously keeps it a per-
mutation.

RC4 consists of two major components that work on two
indexes i, j and the state array S:

1. The key scheduling algorithm, which produces an ini-
tial state array S for a given key.
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2. The pseudorandom generator, which produces the ac-
tual keystream bytes from the state array S which was
produced by the key scheduling algorithm. The pseu-
dorandom generator itself modifies the state array as
it produces keystream bytes.

The key scheduling algorithm

The key scheduling algorithm starts with the identity permu-
tation. That means that each byte is mapped to itself.

Then, the key is mixed into the state. This is done by let-
ting index i iterate over every element of the state. The j
index is found by adding the current value of j (starting at 0)
with the next byte of the key, and the current state element:

Once j has been found, S[i] and S[j] are swapped:
This process is repeated for all the elements of S. If you

run out of key bytes, you just wrap around on the key. This
explains why RC4 accepts keys from anywhere between 1
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and 256 bytes long. Usually, 128 bit (16 byte) keys are used,
which means that each byte in the key is used 16 times.

Or, in Python:

from itertools import cycle

def key_schedule(key):
s = range(256)
key_bytes = cycle(ord(x) for x in key)

j = 0
for i in range(256):

j = (j + s[i] + next(key_bytes)) % 256
s[i], s[j] = s[j], s[i]

return s

The pseudorandom generator

The pseudorandom generator is responsible for producing
pseudorandom bytes from the state S. These bytes form the
keystream, and are XORed with the plaintext to produce the
ciphertext. For each index i, it computes j = j+S[i] (j starts
at 0). Then, S[i] and S[j] are swapped:

To produce the output byte, S[i] and S[j] are added to-
gether. Their sum is used as an index into S; the value at
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S[S[i] + S[j]] is the keystream byte Ki:

We can express this in Python:

def pseudorandom_generator(s):
j = 0
for i in cycle(range(256)):

j = (j + s[i]) % 256
s[i], s[j] = s[j], s[i]

k = (s[i] + s[j]) % 256
yield s[k]

Attacks

This is an optional, in-depth section. It
almost certainly wonʼt help you write bet-
ter software, so feel free to skip it. It is only
here to satisfy your inner geek s̓ curiosity.

The section on the attacks on RC4 is a good deal more com-
plicated than RC4 itself, so you may want to skip this even if
youʼve read this far.

There are many attacks on RC4-using cryptosystems
where RC4 isnʼt really the issue, but are caused by things like
key reuse or failing to authenticate the message. We wonʼt
discuss these in this section. Right now, weʼre only talking
about issues specific to the RC4 algorithm itself.
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Intuitively, we can understand how an ideal stream cipher
would produce a stream of random bits. After all, if that s̓
what it did, we d̓ end up in a situation quite similar to that of
a one-time pad.

Figure 7.2: A one-time pad scheme.

Figure 7.3: A synchronous stream cipher scheme. Note
similarity to the one-time pad scheme. The critical differ-
ence is that while the one-time pad ki is truly random, the
keystream Ki is only pseudorandom.

The stream cipher is ideal if the best way we have to attack
it is to try all of the keys, a process called brute-forcing the
key. If there s̓ an easier way, such as through a bias in the
output bytes, that s̓ a flaw of the stream cipher.

Throughout the history of RC4, people have found many
such biases. In the mid-nineties, Andrew Roos noticed two
such flaws:

• The first three bytes of the key are correlated with the
first byte of the keystream.

• The first few bytes of the state are related to the key
with a simple (linear) relation.
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For an ideal stream cipher, the first byte of the keystream
should tell me nothing about the key. In RC4, it gives me
some information about the first three bytes of the key. The
latter seems less serious: after all, the attacker isnʼt sup-
posed to know the state of the cipher.

As always, attacks never get worse. They only get better.
Adi Shamir and Itsik Mantin showed that the second byte

produced by the cipher is twice as likely to be zero as it
should be. Other researchers showed similar biases in the
first few bytes of the keystream. This sparked further re-
search by Mantin, Shamir and Fluhrer, showing large bi-
ases in the first bytes of the keystream. [FMS01] They also
showed that knowing even small parts of the key would al-
low attackers to make strong predictions about the state and
outputs of the cipher. Unlike RC4, most modern stream
ciphers provide a way to combine a long-term key with a
nonce (a number used once), to produce multiple different
keystreams from the same long-term key. RC4, by itself,
doesnʼt do that. The most common approach was also the
simplest: concatenate6 the long-term key k with the nonce n:
k∥n, taking advantage of RC4 s̓ flexible key length require-
ments. In this context, concatenation means the bits of n
are appended to the bits of k. This scheme meant attackers
could recover parts of the combined key, eventually allow-
ing them to slowly recover the long-term key from a large
amount of messages (around 224 to 226, or tens of millions
of messages).

WEP, a standard for protecting wireless networks that
was popular at the time, was heavily affected by this attack,
because it used this simplistic nonce combination scheme. A
scheme where the long-term key and the nonce had been se-
curely combined (for example using a key derivation func-
tion or a cryptographic hash function) wouldnʼt have had

6 Here we use ∥ as the operator for concatenation. Other common
symbols for concatenation include + (for some programming languages,
such as Python) and � (for formal languages).
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this weakness. Many other standards including TLS were
therefore not affected.

Again, attacks only get better. Andreas Klein showed
more extensive correlation between the key and the
keystream. [Kle08] Instead of tens of millions of messages
with the Fluhrer, Mantin, Shamir attacks, attackers now
only needed several tens of thousands of messages to make
the attack practical. This was applied against WEP with great
effect.

In 2013, a team of researchers at Royal Holloway in Lon-
don produced a combination of two independent practical
attacks [ABP+]. These attacks proved to be very damning
for RC4: while RC4 s̓ weaknesses had been known for a long
time, they finally drove the point home for everyone that it
really shouldnʼt be used anymore.

The first attack is based on single-byte biases in the first
256 bytes of the keystream. By performing statistical analy-
sis on the keystreams produced by a large number of keys,
they were able to analyze the already well-known biases in
the early keystream bytes of RC4 in much greater detail.

TODO: illustrate: http://www.isg.rhul.ac.uk/
tls/RC4_keystream_dist_2_45.txt

The second attack is based on double byte biases any-
where in the keystream. It turns out that adjacent bytes of
the keystream have an exploitable relation, whereas in an
ideal stream cipher you would expect them to be completely
independent.

http://www.isg.rhul.ac.uk/tls/RC4_keystream_dist_2_45.txt
http://www.isg.rhul.ac.uk/tls/RC4_keystream_dist_2_45.txt
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Byte pair Byte position (mod 256) i Probability
(0, 0) i = 1 2−16(1 + 2−9)

(0, 0) i ̸∈ {1, 255} 2−16(1 + 2−8)

(0, 1) i ̸∈ {0, 1} 2−16(1 + 2−8)

(0, i+ 1) i ̸∈ {0, 255} 2−16(1 + 2−8)

(i+ 1, 255) i ̸= 254 2−16(1 + 2−8)

(255, i+ 1) i ̸∈ {1, 254} 2−16(1 + 2−8)

(255, i+ 2) i ̸∈ {0, 253, 254, 255} 2−16(1 + 2−8)

(255, 0) i = 254 2−16(1 + 2−8)

(255, 1) i = 255 2−16(1 + 2−8)

(255, 2) i ∈ {0, 1} 2−16(1 + 2−8)

(255, 255) i ̸= 254 2−16(1 + 2−8)

(129, 129) i = 2 2−16(1 + 2−8)

This table may seem a bit daunting at first. The probabil-
ity expression in the rightmost column may look a bit com-
plex, but there s̓ a reason it s̓ expressed that way. Suppose
that RC4 was a good stream cipher, and all values occurred
with equal probability. Then youd̓ expect the probability for
any given byte value to be 2−8 since there are 28 different
byte values. If RC4 was a good stream cipher, two adjacent
bytes would each have probability 2−8, so any given pair of
two bytes would have probability 2−8 · 2−8 = 2−16. However,
RC4 isnʼt an ideal stream cipher, so these properties arenʼt
true. By writing the probability in the 2−16(1 + 2−k) form,
it s̓ easier to see how much RC4 deviates from what youd̓ ex-
pect from an ideal stream cipher.

So, let s̓ try to read the first line of the table. It says that
when the first byte i = 1 of any 256-byte chunk from the
cipher is 0, then the byte following it is slightly more likely
(1 + 2−9 times as likely, to be exact) to be 0 than for it to
be any other number. We can also see that when one of
the keystream bytes is 255, you can make many predictions
about the next byte, depending on where it occurs in the
keystream. It s̓ more likely to be 0, 1, 2, 255, or the position
in the keystream plus one or two.
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TODO: demonstrate attack success
Again, attacks only get better. These attacks have pri-

marily focused on the cipher itself, and havenʼt been fully
optimized for practical attacks on, say, web services. The at-
tacks can be greatly improved with some extra information
about the plaintext youʼre attempting to recover. For exam-
ple, HTTP cookies are often base-64 or hex encoded.

There s̓ no way around it: we need to stop using RC4.
Fortunately, weʼve also developed many secure alternatives.
The continuing advances in cryptanalysis of RC4 helped con-
tribute to a sense of urgency regarding the improvement of
commonly available cryptographic primitives. Throughout
2013 in particular, this led to large improvements in, for ex-
ample, browser cryptography (we will discuss browser cryp-
tography, notably SSL/TLS, in a later chapter).

7.12 Salsa20

Salsa20 is a newer stream cipher designed by Dan Bernstein.
Bernstein is well-known for writing a lot of open source
(public domain) software, most of which is either directly se-
curity related or built with information security very much
in mind.

There are two minor variants of Salsa20, called
Salsa20/12 and Salsa20/8, which are simply the same
algorithm except with 12 and 8 rounds7 respectively, down
from the original 20. ChaCha is another, orthogonal tweak
of the Salsa20 cipher, which tries to increase the amount
of diffusion per round while maintaining or improving
performance. ChaCha doesnʼt have a “20” after it; spe-
cific algorithms do have a number after them (ChaCha8,
ChaCha12, ChaCha20), which refers to the number of
rounds.

7 Rounds are repetitions of an internal function. Typically a number
of rounds are required to make an algorithm work effectively; attacks of-
ten start on reduced-round versions of an algorithm.
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Salsa20 and ChaCha are among the state of the art of
modern stream ciphers. There are currently no publicly
known attacks against Salsa20, ChaCha, nor against any
of their recommended reduced-round variants, that break
their practical security.

Both cipher families are also pretty fast. For long
streams, Salsa20 takes about 4 cycles per byte for the full-
round version, about 3 cycles per byte for the 12-round ver-
sion and about 2 cycles per byte for the 8-round version, on
modern Intel processors [Ber] and modern AMD processors
[Dai]. ChaCha is (on most platforms) slightly faster still. To
put that into comparison, that s̓ more than three times faster
than RC48, approximately three times faster than AES-CTR
with a 128 bit key at 12.6 cycles per byte, and roughly in the
ballpark of AES GCM mode9 with specialized hardware in-
structions.

Salsa20 has two particularly interesting properties.
Firstly, it is possible to “jump” to a particular point in the
keystream without computing all previous bits. This can be
useful, for example, if a large file is encrypted, and youd̓
like to be able to do random reads in the middle of the file.
While many encryption schemes require the entire file to be
decrypted, with Salsa20, you can just select the portion you
need. Another construction that has this property is a mode
of operation called CTR mode, which weʼll talk about later.

This ability to “jump” also means that blocks from
Salsa20 can be computed independently of one another,
allowing for encryption or decryption to work in parallel,
which can increase performance on multi-core CPUs.

Secondly, it is resistant to many side-channel attacks.
This is done by ensuring that no key material is ever used

8 The quoted benchmarks donʼt mention RC4 but MARC4, which
stands for “modified alleged RC4”. The RC4 section explains why it s̓ “al-
leged”, and “modified” means it throws away the first 256 bytes because
of a weakness in RC4.

9 GCM mode is an authenticated encryption mode, which we will see
in more detail in a later chapter.
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to choose between different code paths in the cipher, and
that every round is made up of a fixed-number of constant-
time operations. The result is that every block is produced
with exactly the same number of operations, regardless of
what the key is.

Both stream ciphers are based on an ARX design. One
benefit of ARX ciphers is that they are intrinsically con-
stant time. There are no secret memory access patterns
that might leak information, as with AES. These ciphers also
perform well on modern CPU architectures without need-
ing cipher-specific optimizations. They take advantage of
generic vector instructions, where the CPU performs related
operations on multiple pieces of data in a single instruction.
As a result, ChaCha20 performance is competitive with AES
on modern Intel CPUs, even though the latter has specialized
hardware.

Here is an example ARX operation:

x← x⊕ (y ⊞ z) ≪ n

To find the new value of x, first we perform a modular addi-
tion (⊞) of y and z, then we XOR (⊕) the result with x and
finally we rotate left (≪) by n bits. This is the core round
primitive of Salsa20.

7.13 Native stream ciphers versus modes of
operation

Some texts only consider native stream ciphers to be stream
ciphers. This book emphasizes what the functionality of the
algorithm is. Since both block ciphers in a mode of operation
and a native stream cipher take a secret key and can be used to
encrypt a stream, and the two can usually replace each other
in a cryptosystem, we just call both of them stream ciphers
and are done with it.

We will further emphasize the tight link between the two
with CTR mode, a mode of operation which produces a syn-
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chronous stream cipher. While there are also modes of opera-
tion (like OFB and CFB) that can produce self-synchronizing
stream ciphers, these are far less common, and not discussed
here.

7.14 CTRmode

CTRmode, short for counter mode, is a mode of operation that
works by concatenating a nonce with a counter. The counter
is incremented with each block, and padded with zeroes so
that the whole is as long as the block size. The resulting con-
catenated string is run through a block cipher. The outputs
of the block cipher are then used as the keystream.

Figure 7.4: CTR mode: a single nonce N with a zero-padded
counter i is encrypted by the block cipher to produce a
keystream block; this block is XORed with the plaintext
block Pi to produce the ciphertext block Ci.

This illustration shows a single input block N∥00 . . . ∥i,
consisting of nonce N , current counter value i and padding,
being encrypted by the block cipher E using key k to pro-
duce keystream blockSi, which is then XORed with the plain-
text block Pi to produce ciphertext block Ci.

Obviously, to decrypt, you do the exact same thing again,
since XORing a bit with the same value twice always pro-
duces the original bit: pi ⊕ si ⊕ si = pi. As a consequence,
CTR encryption and decryption is the same thing: in both
cases you produce the keystream, and you XOR either the
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plaintext or the ciphertext with it in order to get the other
one.

For CTR mode to be secure, it is critical that nonces arenʼt
reused. If they are, the entire keystream will be repeated,
allowing an attacker to mount multi-time pad attacks.

This is different from an initialization vector such as the
one used by CBC. An IV has to be unpredictable. An attacker
being able to predict a CTR nonce doesnʼt really matter: with-
out the secret key, they have no idea what the output of the
block cipher (the sequence in the keystream) would be.

Like Salsa20, CTR mode has the interesting property that
you can jump to any point in the keystream easily: just incre-
ment the counter to that point. The Salsa20 paragraph on this
topic (page 76) explains why that might be useful.

Another interesting property is that since any keystream
block can be computed completely separately from any
other keystream block, both encryption and decryption are
very easy to compute in parallel.

7.15 Stream cipher bit flipping attacks

Synchronous stream ciphers, such as native stream ciphers or
a block cipher in CTR mode, are also vulnerable to a bit flip-
ping attack. It s̓ similar to CBC bit flipping attacks in the
sense that an attacker flips several bits in the ciphertext, and
that causes some bits to be flipped in the plaintext.

This attack is actually much simpler to perform on stream
ciphers than it is on CBCmode. First of all, a flipped bit in the
ciphertext results in the same bit being flipped in the plain-
text, not the corresponding bit in the following block. Addi-
tionally, it only affects that bit; in CBC bit flipping attacks,
the plaintext of the modified block is scrambled. Finally,
since the attacker is modifying a sequence of bytes and not
a sequence of blocks, the attacks are not limited by the spe-
cific block size. In CBC bit flipping attacks, for example, an
attacker can adjust a single block, but canʼt adjust the adja-
cent block.
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TODO illustrate
This is yet another example of why authentication has to

go hand in hand with encryption. If the message is properly
authenticated, the recipient can simply reject the modified
messages, and the attack is foiled.

7.16 Authenticatingmodes of operation

There are other modes of operation that provide authentica-
tion as well as encryption at the same time. Since we havenʼt
discussed authentication at all yet, weʼll handle these later.

7.17 Remaining problems

We now have tools that will encrypt large streams of data
using a small key. However, we havenʼt actually discussed
how weʼre going to agree on that key. As noted in a previous
chapter, to communicate between n people, we need n(n−1)

2
key exchanges. The number of key exchanges grows about
as fast as the number of people squared. While the key to
be exchanged is a lot smaller now than it was with one-time
pads, the fundamental problem of the impossibly large num-
ber of key exchanges hasnʼt been solved yet. We will tackle
that problem in the next section, where weʼll look at key ex-
change protocols: protocols that allow us to agree on a secret
key over an insecure medium.

Additionally, weʼve seen that encryption isnʼt enough to
provide security: without authentication, it s̓ easy for attack-
ers to modify the message, and in many flawed systems even
decrypt messages. In a future chapter, weʼll discuss how to
authenticate messages, to prevent attackers from modifying
them.
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Key exchange

8.1 Description

Key exchange protocols attempt to solve a problem that, at
first glance, seems impossible. Alice and Bob, whoʼve never
met before, have to agree on a secret value. The chan-
nel they use to communicate is insecure: weʼre assuming
that everything they send across the channel is being eaves-
dropped on.

Weʼll demonstrate such a protocol here. Alice and Bob
will end up having a shared secret, only communicating over
the insecure channel. Despite Eve having literally all of the
information Alice and Bob send to each other, she canʼt use
any of that information to figure out their shared secret.

That protocol is called Diffie-Hellman, named after Whit-
field Diffie and Martin Hellman, the two cryptographic pio-
neers who discovered it. They suggested calling the proto-
col Diffie-Hellman-Merkle key exchange, to honor the contri-
butions of Ralph Merkle. While his contributions certainly
deserve honoring, that term hasnʼt really caught on. For the
benefit of the reader weʼll use the more common term.

81
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Practical implementations of Diffie-Hellman rely on
mathematical problems that are believed to be very complex
to solve in the “wrong” direction, but easy to compute in
the “right” direction. Understanding the mathematical im-
plementation isnʼt necessary to understand the principle be-
hind the protocol. Most people also find it a lot easier to un-
derstand without the mathematical complexity. So, weʼll ex-
plain Diffie-Hellman in the abstract first, without any math-
ematical constructs. Afterwards, weʼll look at two practical
implementations.

8.2 Abstract Diffie-Hellman

In order to describe Diffie-Hellman, weʼll use an analogy
based on mixing colors. We can mix colors according to the
following rules:

• It s̓ very easy to mix two colors into a third color.

• Mixing two or more colors in different order results in
the same color.

• Mixing colors is one-way. It s̓ impossible to determine
if, let alone which, multiple colors were used to pro-
duce a given color. Even if you know it was mixed, and
even if you know some of the colors used to produce it,
you have no idea what the remaining color(s) were.

Weʼll demonstrate that with a mixing function like this
one, we can produce a secret color only known by Alice and
Bob. Later, weʼll simply have to describe the concrete imple-
mentation of those functions to get a concrete key exchange
scheme.

To illustrate why this remains secure in the face of eaves-
droppers, weʼll walk through an entire exchange with Eve,
the eavesdropper, in the middle. Eve is listening to all of the
messages sent across the network. Weʼll keep track of ev-
erything she knows and what she can compute, and end up
seeing why Eve canʼt compute Alice and Bobs̓ shared secret.
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To start the protocol, Alice and Bob have to agree on a
base color. They can communicate that across the network:
it s̓ okay if Eve intercepts the message and finds out what the
color is. Typically, this base color is a fixed part of the proto-
col; Alice and Bob donʼt need to communicate it. After this
step, Alice, Bob and Eve all have the same information: the
base color.

Alice and Bob both pick a random color, and they mix it
with the base color.

At the end of this step, Alice and Bob know their respec-
tive secret color, the mix of the secret color and the base
color, and the base color itself. Everyone, including Eve,
knows the base color.

Then, Alice and Bob both send their mixed colors over
the network. Eve sees both mixed colors, but she canʼt fig-
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ure out what either of Alice and Bobs̓ secret colors are. Even
though she knows the base, she canʼt “un-mix” the colors
sent over the network.1

At the end of this step, Alice and Bob know the base, their
respective secrets, their respective mixed colors, and each
other s̓ mixed colors. Eve knows the base color and both
mixed colors.

Once Alice and Bob receive each other s̓ mixed color,
they add their own secret color to it. Since the order of the
mixing doesnʼt matter, theyʼll both end up with the same se-
cret.

1 While this might seem like an easy operation with black-and-white
approximations of color mixing, keep in mind that this is just a failure of
the illustration: our assumption was that this was hard.
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Eve canʼt perform that computation. She could finish the
computation with either Alice or Bobs̓ secret color, since
she has both mixed colors, but she has neither of those se-
cret colors. She can also try to mix the two mixed colors,
which would have both Alice and Bobs̓ secret colors mixed
into them. However, that would have the base color in it
twice, resulting in a different color than the shared secret
color that Alice and Bob computed, which only has the base
color in it once.
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8.3 Diffie-Hellmanwith discrete logarithms

This section describes a practical implementation of the
Diffie-Hellman algorithm, based on the discrete logarithm
problem. It is intended to provide some mathematical back-
ground, and requires modular arithmetic to understand. If
you are unfamiliar with modular arithmetic, you can either
skip this chapter, or first read the mathematical background
appendix (page 186).

Discrete log Diffie-Hellman is based on the idea that com-
puting y in the following equation is easy (at least for a com-
puter):

y ≡ gx (mod p)

However, computing x given y, g and p is believed to be very
hard. This is called the discrete logarithm problem, because
a similar operation without the modular arithmetic is called
a logarithm.

This is just a concrete implementation of the abstract
Diffie-Hellman process we discussed earlier. The common
base color is a large prime p and the base g. The “color mix-
ing” operation is the equation given above, where x is the
input value and y is the resulting mixed value.

When Alice or Bob select their random numbers rA and
rB, they mix them with the base to produce the mixed num-
bers mA and mB:

mA ≡ grA (mod p)

mB ≡ grB (mod p)

These numbers are sent across the network where Eve can
see them. The premise of the discrete logarithm problem
is that it is okay to do so, because figuring out r in m ≡ gr

(mod p) is supposedly very hard.
Once Alice and Bob have each other s̓ mixed numbers,

they add their own secret number to it. For example, Bob
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would compute:

s ≡ (grA)rB (mod p)

While Alice s̓ computation looks different, they get the same
result, because (grA)rB ≡ (grB )rA (mod p). This is the
shared secret.

Because Eve doesnʼt have rA or rB, she can not perform
the equivalent computation: she only has the base number
g and mixed numbers mA ≡ grA (mod p) and mB ≡ grB

(mod p) , which are useless to her. She needs either rA or rB
(or both) to make the computation Alice and Bob do.

TODO: Say something about active MITM attacks where
the attacker picks smooth values to produce weak secrets?

8.4 Diffie-Hellman with elliptic curves

This section describes a practical implementation of the
Diffie-Hellman algorithm, based on the elliptic curve dis-
crete logarithm problem. It is intended to provide some
mathematical background, and requires a (very basic) un-
derstanding of the mathematics behind elliptic curve cryp-
tography. If you are unfamiliar with elliptic curves, you can
either skip this chapter, or first read the mathematical back-
ground appendix (page 202).

One of the benefits of the elliptic curve Diffie-Hellman
variant is that the required key size is much, much smaller
than the variant based on the discrete log problem. This is
because the fastest algorithms for breaking the discrete log
problem have a larger asymptotic complexity than their el-
liptic curve variants. For example, the number field sieve for
discrete logarithms, a state of the art algorithm for attacking
discrete logarithm-based Diffie-Hellman, has time complex-
ity:

L
[
1/3, 3

√
64/9

]
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Which is more than polynomial (but less than exponential)
in the number of digits. On the other hand, the fastest algo-
rithms that could be used to break the elliptic curve discrete
log problem all have complexity:

L [1, 1/2] = O(
√
n)

Relatively speaking, that means that it s̓ much harder to solve
the elliptic curve problem than it is to solve the regular dis-
crete log problem, using state of the art algorithms for both.
The flip side of that is that for equivalent security levels, the
elliptic curve algorithm needs much smaller key sizes [Lab]
[InstitutefStandardsTechnology]2:

Security level in
bits

Discrete log key
bits

Elliptic curve key
bits

56 512 112
80 1024 160
112 2048 224
128 3072 256
256 15360 512

8.5 Remaining problems

Using Diffie-Hellman, we can agree on shared secrets across
an insecure Internet, safe from eavesdroppers. However,
while an attacker may not be able to simply get the secret
from eavesdropping, an active attacker can still break the
system. If such an attacker, usually called Mallory, is in
between Alice and Bob, she can still perform the Diffie-
Hellman protocol twice: once with Alice, where Mallory pre-
tends to be Bob, and once with Bob, where Mallory pretends
to be Alice.

2 These figures are actually for the RSA problem versus the equivalent
elliptic curve problem, but their security levels are sufficiently close to
give you an idea.
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There are two shared secrets here: one between Alice
and Mallory, and one between Mallory and Bob. The at-
tacker (Mallory) can then simply take all the messages they
get from one person and send them to the other, they can
look at the plaintext messages, remove messages, and they
can also modify them in any way they choose.

To make matters worse, even if one of the two partici-
pants was somehow aware that this was going on, they would
have no way to get the other party to believe them. After all:
Mallory performed the successful Diffie-Hellman exchange
with the unwitting victim, she has all the correct shared se-
crets. Bob has no shared secrets with Alice, just with Mal-
lory; there s̓ no way for him to prove that he s̓ the legitimate
participant. As far as Alice can tell, Bob just chose a few ran-
dom numbers. There s̓ no way to link any key that Bob has
with any key that Alice has.

Attacks like these are called MITM attacks, because the
attacker (Mallory) is in between the two peers (Alice and
Bob). Given that the network infrastructure that we typically
use to send messages is run by many different operators,
this kind of attack scenario is very realistic, and a secure
cryptosystem will have to address them somehow.

While the Diffie-Hellman protocol successfully pro-
duced a shared secret between two peers, there are clearly
some pieces of the puzzle still missing to build those cryp-
tosystems. We need tools that help us authenticate Alice to
Bob and vice versa, and we need tools that help guarantee
message integrity, allowing the receiver to verify that the
received messages are in fact the messages the sender in-
tended to send.
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Public-key encryption

9.1 Description

So far, we have only done secret-key encryption. Suppose, that
you could have a cryptosystem that didnʼt involve a single
secret key, but instead had a key pair: one public key, which
you freely distribute, and a private one, which you keep to
yourself.

People can encrypt information intended for you by us-
ing your public key. The information is then impossible to
decipher without your private key. This is called public-key
encryption.

For a long time, people thought this was impossible.
However, starting in the 1970s, such algorithms started ap-
pearing. The first publicly available encryption scheme was
produced by three cryptographers from MIT: Ron Rivest,
Adi Shamir and Leonard Adleman. The algorithm they pub-
lished is still the most common one today, and carries the
first letters of their last names: RSA.

public-key algorithms arenʼt limited to encryption. In fact,
youʼve already seen a public-key algorithm in this book that
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isnʼt directly used for encryption. There are actually three
related classes of public-key algorithms:

1. Key exchange algorithms, such as Diffie-Hellman,
which allow you to agree on a shared secret across an
insecure medium.

2. Encryption algorithms, such as the ones weʼll discuss
in this chapter, which allow people to encrypt without
having to agree on a shared secret.

3. Signature algorithms, which weʼll discuss in a later
chapter, which allow you to sign any piece of informa-
tion using your private key in a way that allows anyone
else to easily verify it using your public key.

9.2 Why not use public-key encryption for
everything?

At face value, it seems that public-key encryption algorithms
obsolete all our previous secret-key encryption algorithms.
We could just use public key encryption for everything,
avoiding all the added complexity of having to do key agree-
ment for our symmetric algorithms. However, when we look
at practical cryptosystems, we see that theyʼre almost always
hybrid cryptosystems: while public-key algorithms play a very
important role, the bulk of the encryption and authentica-
tion work is done by secret-key algorithms.

By far the most important reason for this is performance.
Compared to our speedy stream ciphers (native or otherwise),
public-key encryption mechanisms are extremely slow. RSA
is limited to at most its key size, which for 2048-bit means
256 bytes. Under these circumstances encryption takes 0.29
megacycles, and decryption takes a whopping 11.12 megacy-
cles. [Dai] To put this into perspective, symmetric key algo-
rithms work within an order of magnitude of 10 or so cycles
per byte in either direction. This means it will take a sym-
metric key algorithm approximately 3 kilocycles in order to
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decrypt 256 bytes, which is about 4000 times faster than the
asymmetric version. The state of the art in secure symmet-
ric ciphers is even faster: AES-GCM with hardware acceler-
ation or Salsa20/ChaCha20 only need about 2 to 4 cycles per
byte, further widening the performance gap.

There are a few other problems with most practical cryp-
tosystems. For example, RSA canʼt encrypt anything larger
than its modulus, which is generally less than or equal 4096
bits, far smaller than the largest messages we d̓ like to send.
Still, the most important reason is the speed argument given
above.

9.3 RSA

As we already mentioned, RSA is one of the first practical
public-key encryption schemes. It remains the most common
one to this day.

Encryption and decryption

RSA encryption and decryption relies on modular arith-
metic. You may want to review the modular arithmetic primer
(page 186) before continuing.

This section describes the simplified math problem be-
hind RSA, commonly referred to as “textbook RSA”. By itself,
this doesnʼt produce a secure encryption scheme. Weʼll see
a secure construction called OAEP that builds on top of it in
a later section.

In order to generate a key, you pick two large prime num-
bers p and q. These numbers have to be picked at random,
and in secret. You multiply them together to produce the
modulus N , which is public. Then, you pick an encryption
exponent e, which is also public. Usually, this value is either
3 or 65537. Because those numbers have a small number of
1 s̓ in their binary expansion, you can compute the exponen-
tiation more efficiently. Put together, (N, e) is the public key.
Anyone can use the public key to encrypt a message M into
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a ciphertext C:

C ≡M e (mod N)

The next problem is decryption. It turns out that there is a
value d, the decryption exponent, that can turn C back into M .
That value is fairly easy to compute assuming that you know
p and q, which we do. Using d, you can decrypt the message
like so:

M ≡ Cd (mod N)

The security of RSA relies on that decryption operation be-
ing impossible without knowing the secret exponent d, and
that the secret exponent d is very hard (practically impos-
sible) to compute from the public key (N, e). Weʼll see ap-
proaches for breaking RSA in the next section.

Breaking RSA

Like many cryptosystems, RSA relies on the presumed dif-
ficulty of a particular mathematical problem. For RSA, this
is the RSA problem, specifically: to find the plaintext mes-
sage M , given a ciphertext C, and public key (N, e) in the
equation:

C ≡M e (mod N)

The easiest way we know how to do that is to factor N back
into p · q. Given p and q, the attacker can just repeat the pro-
cess that the legitimate owner of the key does during key gen-
eration in order to compute the private exponent d.

Fortunately, we donʼt have an algorithm that can factor
such large numbers in reasonable time. Unfortunately, we
also havenʼt proven it doesnʼt exist. Even more unfortunate
is that there is a theoretical algorithm, called Shor s̓ algo-
rithm, that would be able to factor such a number in rea-
sonable time on a quantum computer. Right now, quantum
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computers are far from practical, but it does appear that
if someone in the future manages to build one that s̓ suffi-
ciently large, RSA becomes ineffective.

In this section, we have only considered a private key re-
covery attack that attacks the purely abstract mathematical
RSA problem by factoring the modulus. In the next section,
we will see all sorts of realistic attacks on RSA that rely on
flaws in the implementation, rather than the mathematical
problem stated above.

Implementation pitfalls

Right now, there are no known practical complete breaks
against RSA. That s̓ not to say that systems employing RSA
arenʼt routinely broken. Like with most broken cryptosys-
tems, there are plenty of cases where sound components,
improperly applied, result in a useless system. For a more
complete overview of the things that can go wrong with RSA
implementations, please refer to [Bon99] and [AV96]. In this
book, weʼll just highlight a few interesting ones.

PKCSv1.5 padding

Salt

Salt1 is a provisioning system written in Python. It has
one major flaw: it has a module named crypt. Instead of
reusing existing complete cryptosystems, it implements its
own, using RSA and AES provided by a third party package.

For a long time, Salt used a public exponent (e) of 1,
which meant the encryption phase didnʼt actually do any-
thing: P e ≡ P 1 ≡ P (mod N). This meant that the result-
ing ciphertext was in fact just the plaintext. While this issue
has now been fixed, this only goes to show that you probably

1 So, there s̓ Salt the provisioning system, salts the things used in bro-
ken password stores, NaCl pronounced “salt” the cryptography library,
and NaCl which runs native code in some browsers, and probably a bunch
Iʼm forgetting. Can we stop naming things after it?
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shouldnʼt implement your own cryptography. Salt currently
also supports SSH as a transport, but the aforementioned
DIY RSA/AES system remains, and is at time of writing still
the recommended and the default transport.

OAEP

OAEP, short for optimal asymmetric encryption padding, is
the state of the art in RSA padding. It was introduced by Mi-
hir Bellare and Phillip Rogaway in 1995. [BR95]. Its structure
looks like this:

The thing that eventually gets encrypted is X∥Y , which
is n bits long, where n is the number of bits of N , the RSA
modulus. It takes a random block R that s̓ k bits long, where
k is a constant specified by the standard. The message is first
padded with zeroes to be n − k bits long. If you look at the
above “ladder”, everything on the left half is n− k bits long,
and everything on the right half is k bits long. The random
block R and zero-padded message M∥000 . . . are combined
using two “trapdoor” functions, G and H. A trapdoor func-
tion is a function that s̓ very easy to compute in one direc-
tion and very hard to reverse. In practice, these are crypto-
graphic hash functions; weʼll see more about those later.

As you can tell from the diagram, G takes k bits and turns
them into n − k bits, and H is the other way around, taking
n− k bits and turning them into k bits.

The resulting blocks X and Y are concatenated, and the
result is encrypted using the standard RSA encryption prim-
itive, to produce the ciphertext.



CHAPTER 9. PUBLIC-KEY ENCRYPTION 96

To see how decryption works, we reverse all the steps.
The recipient gets X∥Y when decrypting the message. They
know k, since it is a fixed parameter of the protocol, so they
can split up X∥Y into X (the first n− k bits) and Y (the final
k bits).

In the previous diagram, the directions are for padding
being applied. Reverse the arrows on the side of the ladder,
and you can see how to revert the padding:

TODO: reverse arrows
We want to get to M , which is in M∥000 . . .. There s̓ only

one way to compute that, which is:

M∥000 . . . = X ⊕G(R)

Computing G(R) is a little harder:

G(R) = G(H(X)⊕ Y )

As you can see, at least for some definitions of the functions
H and G, we need all of X and all of Y (and hence the en-
tire encrypted message) in order to learn anything about M .
There are many functions that would be a good choice for H
and G; based on cryptographic hash functions, which weʼll
discuss in more detail later in the book.

9.4 Elliptic curve cryptography

TODO: This

9.5 Remaining problem: unauthenticated
encryption

Most public-key encryption schemes can only encrypt small
chunks of data at a time, much smaller than the messages we
want to be able to send. They are also generally quite slow,
much slower than their symmetric counterparts. Therefore
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public-key cryptosystems are almost always used in conjunc-
tion with secret-key cryptosystems.

When we discussed stream ciphers, one of the remaining
issues that we were facing was that we still had to exchange
secret keys with a large number of people. With public-key
cryptosystems such as public encryption and key exchange
protocols, weʼve now seen two ways that we can solve that
problem. That means that we can now communicate with
anyone, using only public information, completely secure
from eavesdroppers.

So far weʼve only been talking about encryption without
any form of authentication. That means that while we can
encrypt and decrypt messages, we cannot verify that the
message is what the sender actually sent.

While unauthenticated encryption may provide secrecy,
we have already seen that without authentication an active
attacker can generally modify valid encrypted messages suc-
cessfully, despite the fact that they donʼt necessarily know
the corresponding plaintext. Accepting these messages can
often lead to secret information being leaked, meaning we
donʼt even get secrecy. The CBC padding attacks weʼve al-
ready discussed illustrate this.

As a result it has become evident that we need ways to
authenticate as well as encrypt our secret communications.
This is done by adding extra information to the message
that only the sender could have computed. Just like encryp-
tion, authentication comes in both private-key (symmetric)
and public-key (asymmetric) forms. Symmetric authenti-
cation schemes are typically called message authentication
codes, while the public-key equivalent is typically called a sig-
nature.

First, we will introduce a new cryptographic primitive:
hash functions. These can be used to produce both signa-
ture schemes as well as message authentication schemes.
Unfortunately, they are also very often abused to produce
entirely insecure systems.
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Hash functions

10.1 Description

Hash functions are functions that take an input of indeter-
minate length and produce a fixed-length value, also known
as a “digest”.

Simple hash functions have many applications. Hash ta-
bles, a common data structure, rely on them. These sim-
ple hash functions really only guarantee one thing: for two
identical inputs, theyʼll produce an identical output. Impor-
tantly, there s̓ no guarantee that two identical outputs imply
that the inputs were the same. That would be impossible:
there s̓ only a finite amount of digests, since theyʼre fixed
size, but there s̓ an infinite amount of inputs. A good hash
function is also quick to compute.

Since this is a book on cryptography, weʼre particularly
interested in cryptographic hash functions. Cryptographic
hash functions can be used to build secure (symmetric) mes-
sage authentication algorithms, (asymmetric) signature al-
gorithms, and various other tools such as random number
generators. Weʼll see some of these systems in detail in fu-
ture chapters.

98
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Cryptographic hash functions have much stronger prop-
erties than regular hash functions, such as one that you
might find in a hash table. For a cryptographic hash func-
tion, we want it to be impossibly hard to:

1. modify a message without changing the hash.

2. generate a message that has a given hash.

3. find two different messages with the same hash.

The first property implies that cryptographic hash func-
tions will exhibit something known as the “avalanche ef-
fect”. Changing even a single bit in the input will produce
an avalanche of changes through the entire digest: each bit
of the digest will have approximately 50% chance of flip-
ping. That doesnʼt mean that every change will cause approx-
imately half of the bits to flip, but the cryptographic hash
function does guarantee that the odds of that happening are
extremely large. More importantly it is impossibly hard to
find such collisions or near-collisions.

The second property, which states that it should be dif-
ficult to find a message m that has a given hash value h, is
called pre-image resistance. This makes a hash function a one-
way function: it s̓ very easy to compute a hash for a given
message, but it s̓ very hard to compute a message for a given
hash.

The third property talks about finding messages with the
same hash value, comes in two flavors. In the first one,
there s̓ a given message m, and it should be difficult to find
another message m′ with the same hash value: that s̓ called
second pre-image resistance. The second one is stronger, stat-
ing that it should be hard to find any two messagesm,m′ that
have the same hash value. This is called collision resistance.
Because collision resistance is a stronger form of second pre-
image resistance, theyʼre sometimes also called weak and
strong collision resistance.

These concepts are often named from the point of view
of an attack, rather than the resistance to an attack. For ex-
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ample, youʼll often hear about a collision attack, which is an
attack that attempts to generate a hash collision, or a second
pre-image attack, which attempts to find a second pre-image
that hashes to the same value as a given pre-image, et cetera.

TODO: Maybe link to http://www.cs.ucdavis.edu/
~rogaway/papers/relates.pdf for further reading

10.2 MD5

MD5 is a hash function designed by Ronald Rivest in 1991
as an extension of MD4. This hash function outputs 128-
bit digests. Over the course of the years, the cryptographic
community has repeatedly uncovered MD5 s̓ weaknesses. In
1993, Bert den Boer and Antoon Bosselaers published a pa-
per demonstrating “pseudo-collisions” for the compression
function of MD5. [dBB93] Dobbertin expanded upon this re-
search and was able to produce collisions for the compres-
sion function. In 2004, based on Dobbertins̓ work, Xiaoyun
Wang, Dengguo Feng, Xuejia Lai and Hongbo Yu showed that
MD5 is vulnerable to real collision attacks. [LWdW05] The
last straw came when Xiaoyun Wang et al. managed to gen-
erate colliding X.509 certificates and then presented a distin-
guishing attack on HMAC-MD5. [LWdW05] [WYW+09]

Nowadays, it is not recommended to use MD5 for gen-
erating digital signatures, but it is important to note that
HMAC-MD5 is still a secure form of message authentication;
however, it probably shouldnʼt be implemented in new cryp-
tosystems.

Five steps are required to compute an MD5 message di-
gest:

1. Add padding. First, 1 bit is appended to the message
and then 0 bits are added to the end until the length is
448 (mod 512).

2. Fill up the remaining 64 bits with the the length of the
original message modulo 264, so that the entire mes-
sage is a multiple of 512 bits.

http://www.cs.ucdavis.edu/~rogaway/papers/relates.pdf
http://www.cs.ucdavis.edu/~rogaway/papers/relates.pdf
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3. Initialize the state as four 32-bit words, A, B, C and
D. These are initialized with constants defined in the
spec.

4. Process the input in 512 bit blocks; for each block, run
four “rounds” consisting of 16 similar operations each.
The operations all consist of shifts, modular addition,
and a specific nonlinear function, different for each
round.

Once done, A∥B∥C∥D is the output of the hash. This
padding style combined with the concatenation at the end
is what makes MD5 vulnerable to length extension attacks;
more on that later.

In Python one can use the hashlib module to create an
MD5 digest as follows:

import hashlib
hashlib.md5(b”crypto101”).hexdigest()

10.3 SHA-1

SHA-1 is another hash function from the MD4 family de-
signed by the NSA, which produces a 160-bit digest. Just like
MD5, SHA-1 is no longer considered secure for digital signa-
tures. Many software companies and browsers, including
Google Chrome, have started to retire support of the signa-
ture algorithm of SHA-1. On February 23, 2017 researchers
from CWI Amsterdam and Google managed to produce a col-
lision on the full SHA-1 function. [SBK+] In the past methods
to cause collisions on reduced versions of SHA-1 have been
published, including one by Xiaoyun Wang. “The SHAppen-
ing” demonstrated freestart collisions for SHA-1. A freestart
collision allows one to pick the initial value known as the
initialization vector at the start of the compression function.
[SKP15]

Once again the hashlib Python module can be used to
generate a SHA-1 hash:
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import hashlib
hashlib.sha1(b”crypto101”).hexdigest()

10.4 SHA-2

SHA-2 is a family of hash functions including SHA-224, SHA-
256, SHA-384, SHA-512, SHA-512/224 and SHA-512/256 and
their digest sizes 224, 256, 384, 512, 224 and 256 respectively.
These hash functions are based on the Merkle–Damgård
construction and can be used for digital signatures, message
authentication and random number generators. SHA-2 not
only performs better than SHA-1, it also provides better se-
curity, because of its increase in collision resistance.

SHA-224 and SHA-256 were designed for 32-bit proces-
sor registers, while SHA-384 and SHA-512 for 64-bit registers.
The 32-bit register variants will therefore run faster on a 32-
bit CPU and the 64-bit variants will perform better on a 64-bit
CPU. SHA-512/224 and SHA-512/256 are truncated versions
of SHA-512 allowing use of 64-bit words with an output size
equivalent to the 32-bit register variants (i.e., 224 and 256 di-
gest sizes and better performance on a 64-bit CPU).

The following is a table that gives a good overview of the
SHA-2 family:

Hash func-
tion

Message
size

Block
size

Word
size

Digest
size

SHA-224 < 264 512 32 224
SHA-256 < 264 512 32 256
SHA-384 < 2128 1024 64 384
SHA-512 < 2128 1024 64 512
SHA-
512/224

< 2128 1024 64 224

SHA-
512/256

< 2128 1024 64 256

You can hash an empty string with the hashlib module
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and compare digest sizes as follows:

>>> import hashlib
>>> len(hashlib.sha224(b””).hexdigest())
56
>>> len(hashlib.sha256(b””).hexdigest())
64
>>> len(hashlib.sha384(b””).hexdigest())
96
>>> len(hashlib.sha512(b””).hexdigest())
128

Attacks on SHA-2

Several (pseudo-)collision and preimage attacks have been
demonstrated using SHA-256 and SHA-512 with less rounds.
It is important to note that by removing a certain amount of
rounds one canʼt attack the entire algorithm. For instance,
Somitra Kumar Sanadhya and Palash Sarkar were able to
cause collisions with SHA-256 using 24 of 64 rounds (remov-
ing the last 40 rounds). [SS08]

10.5 Keccak and SHA-3

Keccak is a family of sponge functions designed by Guido
Bertoni, Joan Daemen, Gilles Van Assche and Michaël
Peeters, which won NIST s̓ Secure Hash Algorithm Competi-
tion in 2012. Keccak has since been standardized in form of
the SHA3-224, SHA3-256, SHA3-384 and SHA3-512 hash func-
tions.

Although SHA-3 sounds like it might come from the same
family as SHA-2, the two are designed very differently. SHA-
3 is very efficient in hardware [Hua], but is relatively slow in
software in comparison to SHA-2. [ECR] Later in the book,
you will find the security aspects of SHA-3, such as prevent-
ing length extension attacks.

The SHA-3 hash functions were introduced in Python ver-
sion 3.6 and can be used as follows:
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import hashlib
hashlib.sha3_224(b”crypto101”).hexdigest()
hashlib.sha3_256(b”crypto101”).hexdigest()
hashlib.sha3_384(b”crypto101”).hexdigest()
hashlib.sha3_512(b”crypto101”).hexdigest()

10.6 Password storage

One of the most common use cases for cryptographic hash
functions, and unfortunately one which is also completely
and utterly broken, is password storage.

Suppose you have a service where people log in using a
username and a password. Youd̓ have to store the password
somewhere, so that next time the user logs in, you can verify
the password they supplied.

Storing the password directly has several issues. Besides
an obvious timing attack in the string comparison, if the
password database were to be compromised, an attacker
would be able to just go ahead and read all of the passwords.
Since many users re-use passwords, that s̓ a catastrophic fail-
ure. Most user databases also contain their e-mail addresses,
so it would be very easy to hi-jack a bunch of your user s̓ ac-
counts that are unrelated to this service.

Hash functions to the rescue

An obvious approach would be to hash the password using
a cryptographically secure hash function. Since the hash
function is easy to compute, whenever the user provides
their password, you can just compute the hash value of that,
and compare that to what you stored in the database.

If an attacker were to steal the user database, they could
only see the hash values, and not the actual passwords.
Since the hash function is impossible for an attacker to in-
verse, they wouldnʼt be able to turn those back into the orig-
inal passwords. Or so people thought.
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Rainbow tables

It turns out that this reasoning is flawed. The amount of
passwords that people actually use is very limited. Even
with very good password practices, theyʼre strings some-
where between 10 and 20 characters, consisting mostly of
things that you can type on common keyboards. In practice
though, people use even worse passwords: things based on
real words (password, swordfish), consisting of few sym-
bols and few symbol types (1234), or with predictable mod-
ifications of the above (passw0rd).

To make matters worse, hash functions are the same ev-
erywhere. If a user re-uses the same password on two sites,
and both of them hash the password using MD5, the values
in the password database will be the same. It doesnʼt even
have to be per-user: many passwords are extremely com-
mon (password), so many users will use the same one.

Keep in mind that a hash function is easy to evaluate.
What if we simply try many of those passwords, creating
huge tables mapping passwords to their hash values?

That s̓ exactly what some people did, and the tables were
just as effective as youd̓ expect them to be, completely break-
ing any vulnerable password store. Such tables are called
rainbow tables. This is because theyʼre essentially sorted lists
of hash function outputs. Those outputs will be more or less
randomly distributed. When written down in hexadecimal
formats, this reminded some people of color specifications
like the ones used in HTML, e.g. #52f211, which is lime
green.

Salts

The reason rainbow tables were so incredibly effective was
because everyone was using one of a handful of hash func-
tions. The same password would result in the same hash ev-
erywhere.

This problem was generally solved by using salts. By mix-



CHAPTER 10. HASH FUNCTIONS 106

ing (appending or prepending1) the password with some ran-
dom value before hashing it, you could produce completely
different hash values out of the same hash function. It ef-
fectively turns a hash function into a whole family of related
hash functions, with virtually identical security and perfor-
mance properties, except with completely different output
values.

The salt value is stored next to the password hash in the
database. When the user authenticates using the password,
you just combine the salt with the password, hash it, and
compare it against the stored hash.

If you pick a sufficiently large (say, 160 bits/32 bytes),
cryptographically random salt, youʼve completely defeated
ahead-of-time attacks like rainbow tables. In order to suc-
cessfully mount a rainbow table attack, an attacker would
have to have a separate table for each of those salt values.
Since even a single table was usually quite large, storing a
large amount of them would be impossible. Even if an at-
tacker would be able to store all that data, they d̓ still have
to compute it first. Computing a single table takes a decent
amount of time; computing 2160 different tables is impossi-
ble.

Many systems used a single salt for all users. While
that prevented an ahead-of-time rainbow table attack, it still
allowed attackers to attack all passwords simultaneously,
once they knew the value of the salt. An attacker would
simply compute a single rainbow table for that salt, and
compare the results with the hashed passwords from the
database. While this would have been prevented by using a
different salt for each user, systems that use a cryptographic
hash with a per-user salt are still considered fundamentally
broken today; they are just harder to crack, but not at all se-
cure.

1 While you could also do this with XOR, it s̓ needlessly more error-
prone, and doesnʼt provide better results. Unless you zero-pad both the
password and the salt, you might be truncating either one.
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Perhaps the biggest problem with salts is that many
programmers were suddenly convinced they were doing
the right thing. They d̓ heard of broken password storage
schemes, and they knew what to do instead, so they ignored
all talk about how a password database could be compro-
mised. They werenʼt the ones storing passwords in plain-
text, or forgetting to salt their hashes, or re-using salts for
different users. It was all of those other people that didnʼt
know what they were doing that had those problems. Un-
fortunately, that s̓ not true. Perhaps that s̓ why broken pass-
word storage schemes are still the norm.

Modern attacks on weak password systems

To a modern attack, salts quite simply donʼt help. Modern at-
tacks take advantage of the fact that the hash function being
used is easy to compute. Using faster hardware, in particular
video cards, we can simply enumerate all of the passwords,
regardless of salt.

TODO: more concrete performance numbers about
GPUs

Salts may make precomputed attacks impossible, but
they do very little against an attacker that actually knows
the salt. One approach you might be inclined to take is to at-
tempt to hide the salt from the attacker. This typically isnʼt
very useful: if an attacker can manage to access the database,
attempts to hide the salt are unlikely to be successful. Like
many ineffective home-grown crypto schemes, this only pro-
tects against an incredibly improbable event. It would be
much more useful to just use a good password store to begin
with, than trying to fix a broken one.

So where do we go from here?

In order to protect passwords, you need a (low-entropy) key
derivation function (page 137). Weʼll discuss them in more
detail in a future chapter.
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While key derivation functions can be built using cryp-
tographic hash functions, they have very different perfor-
mance properties. This is a common pattern: while crypto-
graphic hash functions are incredibly important primitives
for building secure tools (such as key derivation functions
or message authentication algorithms), they are routinely
abused as those tools themselves. In the rest of this chap-
ter, we will see other examples of how cryptographic hash
functions can be used and abused.

10.7 Length extension attacks

In many hash functions, particularly the previous genera-
tions, the internal state kept by the hash function is used as
the digest value. In some poorly engineered systems, that
causes a critical flaw: if an attacker knows H(M1), it s̓ very
simple to compute H(M1∥M2), without actually knowing
the value of M1. Since you know H(M1), you know the state
of the hash function after it s̓ hashed M1. You can use that to
reconstruct the hash function, and ask it to hash more bytes.
Setting the hash functions̓ internal state to a known state
you got from somewhere else (such as H(M1)) is called fixa-
tion.

For most real-world hash functions, it s̓ a little bit more
complicated than that. They commonly have a padding step
that an attacker needs to recreate. MD5 and SHA-1 have the
same padding step. It s̓ fairly simple, so weʼll go through it:

1. Add a 1 bit to the message.

2. Add zero bits until the length is 448 (mod 512).

3. Take the total length of the message, before padding,
and add it as a 64-bit integer.

For the attacker to be able to compute H(M1∥M2) given
H(M1), the attacker needs to fake that padding, as well. The
attacker will actually computeH(M1∥G∥M2), whereG is the
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glue padding, called that way because it glues the two mes-
sages together. The hard part is knowing the length of the
message M1.

In many systems, the attacker can actually make fairly
educated guesses about the length of M1, though. As an ex-
ample, consider the common (broken) example of a secret-
prefix authentication code. People send messages Mi, au-
thenticated using Ai = H(S∥Mi), where S is a shared secret.
Weʼll see (and break) this MAC algorithm in a future section.

It s̓ very easy for the recipient to compute the same func-
tion, and verify the code is correct. Any change to the mes-
sage Mi will change the value of Ai drastically, thanks to the
avalanche effect. Unfortunately, it s̓ quite easy for attackers
to forge messages. Since the MAC is usually sent together
with the original message, the attacker knows the length of
the original message. Then, the attacker only has to guess
at the length of the secret, which is often fixed as part of the
protocol, and, even if it isnʼt, the attacker will probably get
in a hundred tries or less. Contrast this with guessing the
secret itself, which is impossible for any reasonably chosen
secret.

There are secure authentication codes that can be de-
signed using cryptographic hash functions: this one just
isnʼt it. Weʼll see better ones in a later chapter.

Some hash functions, particularly newer ones such as
SHA-3 competition finalists, do not exhibit this property.
The digest is computed from the internal state, instead of
using the internal state directly.

This makes the SHA-3-era hash functions not only a bit
more fool-proof, but also enables them to produce simpler
schemes for message authentication. (Weʼll elaborate on
those in a later chapter.) While length extension attacks only
affected systems where cryptographic hash functions were
being abused in the first place, there s̓ something to be said
for preventing them anyway. People will end up making mis-
takes, we might as well mitigate where we can.

TODO: say why this prevents meet in the middle attacks?
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10.8 Hash trees

Hash trees are trees2 where each node is identified by a hash
value, consisting of its contents and the hash value of its
ancestor. The root node, not having an ancestor, simply
hashes its own contents.

This definition is very wide: practical hash trees are
often more restricted. They might be binary trees3, or
perhaps only leaf nodes carry data of their own, and par-
ent nodes only carry derivative data. Particularly these re-
stricted kinds are often called Merkle trees.

Systems like these or their variants are used by many sys-
tems, particularly distributed systems. Examples include
distributed version control systems such as Git, digital cur-
rencies such as Bitcoin, distributed peer-to-peer networks
like Bittorrent, and distributed databases such as Cassandra.

10.9 Remaining issues

Weʼve already illustrated that hash functions, by themselves,
canʼt authenticate messages, because anyone can compute
them. Also, weʼve illustrated that hash functions canʼt be
used to secure passwords. Weʼll tackle both of these prob-
lems in the following chapters.

While this chapter has focused heavily on what hash
functions can’t do, it canʼt be stressed enough that they are
still incredibly important cryptographic primitives. They
just happen to be commonly abused cryptographic primi-
tives.

2 Directed graphs, where each node except the root has exactly one
ancestor.

3 Each non-leaf node has no more than two children
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Message authentication
codes

11.1 Description

A MAC is a small bit of information that can be used to check
the authenticity and the integrity of a message. These codes
are often called “tags”. A MAC algorithm takes a message
of arbitrary length and a secret key of fixed length, and pro-
duces the tag. The MAC algorithm also comes with a verifi-
cation algorithm that takes a message, the key and a tag, and
tells you if the tag was valid or not. (It is not always sufficient
to just recompute a tag and check if they are the same; many
secure MAC algorithms are randomized, and will produce
different tags every time you apply them.)

Note that we say “message” here instead of “plaintext”
or “ciphertext”. This ambiguity is intentional. In this book
weʼre mostly interested in MACs as a way to achieve authenti-
cated encryption, so the message will always be a ciphertext.
That said, there s̓ nothing wrong with a MAC being applied
to a plaintext message. In fact, we will be seeing examples

111
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of secure authenticated encryption schemes that explicitly
allow for authenticated (but not encrypted) information to
be sent along with the authenticated ciphertext.

Often, when you just want to talk about the authenticity
and integrity of a particular message, it may be more prac-
tical to use a signature algorithm, which weʼll talk about in a
later chapter. For now, all you need to know is that the term
“signature” is normally reserved for asymmetric algorithms,
whereas this chapter deals with symmetric algorithms.

Secure MACs

We havenʼt quite defined yet exactly which properties we
want from a secure MAC.

We will be defending against an active attacker. The
attacker will be performing a chosen message attack. That
means that an attacker will ask us the tag for any number
of messages mi, and weʼll answer truthfully with the appro-
priate tag ti.

An attacker will then attempt to produce an existential
forgery, a fancy way of saying that they will produce some
new valid combination of (m, t). The obvious target for the
attacker is the ability to produce valid tags t′ for new mes-
sages m′ of their choosing. We will also consider the MAC
insecure if an attacker can compute a new, different valid
tag t′ for a message mi that we previously gave them a valid
tag for.

Why does a MAC take a secret key?

If youʼve had to deal with verifying the integrity of a mes-
sage before, you may have used checksums (like CRC32 or
Adler32) or even cryptographic hashes (like the SHA family)
in order to compute a checksum for the message (depending
on the algorithm and who youʼre talking to, they may have
called it “hash” or “digest”, too).

Let s̓ say that youʼre distributing a software package. You
have some tarballs with source code in them, and maybe
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some binary packages for popular operating systems. Then
you put some (cryptographically secure!) hashes right next
to them, so that anyone who downloads them can verify the
hashes and be confident that they downloaded what they
think they downloaded.

Of course, this scheme is actually totally broken. Com-
puting those hashes is something everyone can do. Youʼre
even relying on that fact for your user to be able to verify
their download. That also means that an attacker that mod-
ified any of the downloads can just compute the hash again
for the modified download and save that value. A user down-
loading the modified file will compute its hash and com-
pare it against the modified hash, and conclude that the
download worked. The scheme provided no help whatso-
ever against an attacker modifying the download, either as
stored, or in transit.

In order to do this securely, you would either apply a sig-
nature algorithm to the binaries directly, or by signing the
digests, as long as the hash function used to produce the di-
gest is secure against second-preimage attacks. The impor-
tant difference is that producing a signature (using either a
pre-shared key with your users, or, preferably, a public-key
signature algorithm) is not something that an attacker can
do. Only someone who has the secret keys can do that.

11.2 CombiningMAC andmessage

As weʼve mentioned before, unauthenticated encryption is
bad. That s̓ why we introduced MACs. Of course, for a MAC
to be useful, it has to make it to the recipient. Since weʼre ex-
plicitly talking about authenticating encryption, now, weʼll
stop using the word “message” and instead use the less am-
biguous “plaintext” and “ciphertext”.

There are three common ways to combine a ciphertext
with a MAC.

1. Authenticate and encrypt. You authenticate and en-
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crypt the plaintext separately. This is how SSH does
it. In symbols: C = E(KC , P ), t = MAC(KM , P ), and
you send both ciphertext C and tag t.

2. Authenticate, then encrypt. You authenticate the
plaintext and then encrypt the combination of the
plaintext and the authentication tag. This is how TLS
usually does it. In symbols: t = MAC(KM , P ), C =
E(KC , P∥t), and you only send C. (You donʼt need to
send t, because it s̓ already an encrypted part of C.)

3. Encrypt, then authenticate. You encrypt the plaintext,
compute the MAC of that ciphertext. This is how IPSec
does it. In symbols: C = E(KC , P ), t = MAC(KM , C),
and you send both C and t.

All of these options were studied and compared exten-
sively. [Kra01] [BN07] We now know that out of all of these,
encrypt-then-authenticate is unequivocally the best option.
It s̓ so emphatically the best option that Moxie Marlinspike,
a well-respected information security researcher, has a prin-
ciple called “The Cryptographic Doom Principle” for any
system that does not follow this pattern [Mar11]. Moxie
claims that any system that does anything before checking
the MAC is doomed. Both authenticate-and-encrypt and
authenticate-then-encrypt require you to decrypt something
before you can verify the authentication.

Authenticate-then-encrypt

Authenticate-then-encrypt is a poor choice, but it s̓ a subtle
poor choice. It can still be provably secure, but only under
certain conditions. [Kra01]

At first sight, this scheme appears to work. Sure, you
have to decrypt before you can do anything, but to many
cryptographers, including the designers of TLS, this did not
appear to pose a problem.

In fact, prior to rigorous comparative study of differ-
ent composition mechanisms, many preferred this setup.
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In a critique of IPSec, Schneier and Ferguson, two vet-
eran cryptographers, considered IPSec s̓ use of encrypt-
then-authenticate was a flaw, preferring TLS s̓ authenticate-
then-encrypt. [FS99] While they may have had a plausible
(albeit mostly heuristic) argument for the time, this criti-
cism is completely superseded by the provable security of
encrypt-then-authenticate schemes. [Kra01] [BN07]

TODO: Explain Vaudenay CBC attack [Vau]

Authenticate-and-encrypt

Authenticate-and-encrypt has some serious problems.
Since the tag authenticates the plaintext and that tag is
part of the transmitted message, an attacker will be able
to recognize two plaintext messages are the same because
their tags will also be the same. This essentially leads to the
same problem we saw with ECB mode, where an attacker
can identify identical blocks. That s̓ a serious problem, even
if they canʼt decrypt those blocks.

TODO: Explain how this works in SSH (see Moxie s̓ Doom
article)

11.3 A naive attempt with hash functions

Many ways of constructing MACs involve hash functions.
Perhaps one of the simplest ways you could imagine doing
that is to just prefix the message with the secret key and hash
the whole thing:

t = H(k∥m)

This scheme is most commonly called “Prefix-MAC”, be-
cause it is a MAC algorithm that works by using the secret
key as a prefix.

The cryptographically secure hash function H guaran-
tees a few things that are important to us here:
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• The tag t will be easy to compute; the hash function
H itself is typically very fast. In many cases we can
compute the common key part ahead of time, so we
only have to hash the message itself.

• Given any number of tags, there is no way for an at-
tacker to “invert” the hash function to recover k, which
would allow them to forge arbitrary messages.

• Given any number of tags, there is no way for an at-
tacker to “rewind” the hash function to recover H(k),
which may allow them to forge almost arbitrary mes-
sages.

One small caveat: weʼre assuming that the secret key k
has enough entropy. Otherwise, we have the same issue that
we had for password storage using hash functions: an at-
tacker could just try every single k until one of them matches.
Once theyʼve done that, theyʼve almost certainly found the
correct k. That s̓ not really a failure of the MAC though: if
your secret key contains so little entropy that it s̓ feasible for
an attacker to try all of them, youʼve already lost, no matter
which MAC algorithm you pick.

Breaking prefix-MAC

Despite being quite common, this MAC is actually com-
pletely insecure for most (cryptographically secure!) hash
functions H, including SHA-2.

As we saw in the chapter on hash functions, many hash
functions, such as MD5, SHA-0, SHA-1 and SHA-2, pad the
message with a predictable padding before producing the
output digest. The output digest is the same thing as the
internal state of the hash function. That s̓ a problem: the
attacker can use those properties to forge messages.

First, they use the digest as the internal state of the hash
function. That state matches the state you get when you hash
k∥m∥p, where k is the secret key, m is the message, and p is
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that predictable padding. Now, the attacker gets the hash
function to consume some new bytes: the attacker s̓ chosen
message m′. The internal state of the hash function is now
what you get when you feed it k∥m∥p∥m′. Then, the attacker
tells the hash function to produce a digest. Again, the hash
function appends a padding, so weʼre now at k∥m∥p∥m′∥p′.
The attacker outputs that digest as the tag. That is exactly
the same thing as what happens when you try to compute
the tag for the message m∥p∥m′ under the secret key k. So,
the attacker has successfully forged a tag for a new message,
and, by our definition, the MAC is insecure.

This attack is called a length extension attack, because
you are extending a valid message. The padding in the mid-
dle p, which started out as the padding for the original mes-
sage but has become just some data in the middle, is called
glue padding, because it glues the original messagem and the
attacker s̓ message m′ together.

This attack might sound a little academic, and far from
a practical problem. We may have proven that the MAC is
insecure by our definition, but the only tags the attacker
can successfully forge are for very limited modifications of
real messages. Specifically, the attacker can only forge tags
for a message that consists of a message we sent, followed
by some binary junk, followed by something the attacker
chooses. However, it turns out that for many systems, this
is plenty to result in real breaks. Consider the following
Python code that parses a sequence of key-value pairs that
look like k1=v1&k2=v2&...:1

def parse(s):
pairs = s.split(”&”)
parsed = {}
for pair in pairs:

key, value = pair.split(”=”)
(continues on next page)

1 I realize there are briefer ways to write that function. I am trying to
make it comprehensible to most programmers; not pleasing to advanced
Pythonistas.
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(continued from previous page)
parsed[key] = value

return parsed

The parsing function only remembers the last value for a
given key: previous values in the dictionary are overwritten.
As a result, an attacker mounting a length extension attack
can effectively control the parsed dictionary entirely.

If youʼre thinking that this code has many issues; sure, it
does. For example, it doesnʼt handle escaping correctly. But
even if it did, that wouldnʼt really fix the length extension at-
tack problem. Most parsing functions will perfectly happily
live with that binary junk in the middle. Hopefully it con-
vinces you that there is in fact a pretty good chance that an
attacker can produce messages with valid tags that say some-
thing entirely different from what you intended.

The prefix-MAC construction is actually secure with
many current (SHA-3-era) hash functions, such as Keccak
and BLAKE(2). The specifications for these hash functions
even recommend it as a secure and fast MAC. They use
various techniques to foil length extension attacks: for ex-
ample, BLAKE keeps track of the number of bits that have
been hashed so far, while BLAKE2 has a finalization flag that
marks a specific block as the last.

Variants

Issues with prefix-MAC has tempted people to come up with
all sorts of clever variations. For example, why not add
the key to the end instead of the beginning (t = H(m∥k),
or “suffix-MAC”, if you will)? Or maybe we should append
the key to both ends for good measure (t = H(k∥m∥k),
“sandwich-MAC” perhaps?)?

For what it s̓ worth, both of these are at least better than
prefix-MAC, but both of these have serious issues. For exam-
ple, a suffix-MAC system is more vulnerable to weaknesses
in the underlying hash function; a successful collision attack
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breaks the MAC. Sandwich-MAC has other, more complex is-
sues.

Cryptography has produced much stronger MACs, which
weʼll see in the next few sections. There are no good reasons
not to use them.

11.4 HMAC

HMAC is a standard to produce a MAC with a cryptographic
hash function as a parameter. It was introduced in 1996 in a
paper by Bellare, Canetti and Krawczyk. Many protocols at
the time implemented their own attempt at message authen-
tication using hash functions. Most of these attempts failed.
The goal of that paper specifically was to produce a provably
secure MAC that didnʼt require anything beyond a secret key
and a hash function.

One of the nice features of HMAC is that it has a fairly
strong security proof. As long as the underlying hash func-
tion is a pseudorandom function, HMAC itself is also a pseu-
dorandom function. The underlying hash function doesnʼt
even have to be collision resistant for HMAC to be a secure
MAC. [Bel06] This proof was introduced after HMAC itself,
and matched real-world observations: even though MD5
and to a lesser extent SHA-0 had serious collision attacks,
HMAC constructions built from those hash functions still ap-
peared to be entirely secure.

The biggest difference between HMAC and prefix-MAC
or its variants is that the message passes through a hash func-
tion twice, and is combined with the key before each pass.
Visually, HMAC looks like this:

The only surprising thing here perhaps are the two con-
stants pinner (the inner padding, one hash functions̓ block
length worth of 0x36 bytes) and pouter (the outer padding,
one block length worth of 0x5c bytes). These are necessary
for the security proof of HMAC to work; their particular val-
ues arenʼt very important, as long as the two constants are
different.
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The two pads are XORed with the key before use. The re-
sult is either prepended to the original message (for the in-
ner padding pinner) or to the intermediate hash output (for
the outer padding pouter). Because theyʼre prepended, the
internal state of the hash function after processing the pre-
fixes can be computed ahead of time, shaving a few cycles
off the MAC computation time.

11.5 One-timeMACs

So far, weʼve always assumed that MAC functions can be
used with a single key to produce secure MACs for a very
large number of messages. By contrast, one-time MACs are



CHAPTER 11. MESSAGE AUTHENTICATION CODES 121

MAC functions that can only securely be used once with a
single key. That might sound like a silly idea, since weʼve
already talked about regular secure MACs. An algorithm
that only works once just seems objectively worse. However,
they have several big advantages:

• They can be incredibly fast to evaluate, even for very
large messages.

• They have a compelling security proof based on the in-
formation content of the tag.

• A construction exists to turn a one-time MAC into a se-
cure multiple-use MAC, removing the principal prob-
lem.

A typical simple example of such one-timeMACs consists
of a simple multiplication and addition modulo some large
prime p. In this case, the secret key consists of two truly
random numbers a and b, both between 1 and p.

t ≡ m · a+ b (mod p)

This simple example only works for one-block messages m,
and some prime p slightly bigger than the biggest m. It can
be extended to support bigger messages M consisting of
blocks mi by using a message-specific polynomial P :

t ≡ (mn · an + · · ·+m1 · a)︸ ︷︷ ︸
P (M,a)

+b (mod p)

This might look like a lot of computation, but this polyno-
mial can be efficiently evaluated by iteratively factoring out
the common factor a (also known as Horner s̓ rule):

P (M,a) ≡ a · (a · (a · (· · · ) +m2) +m1) + b (mod p)

By computing each multiplication modulo p, the numbers
will remain conveniently small.
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In many ways, a one-time MAC is to authentication what
a one-time pad is to encryption. The security argument is
similar: as long as the key is only used once, an attacker
learns no information about the key or the message, because
they are being irreversibly mixed. This demonstrates that
the MAC is secure against attackers trying to produce exis-
tential forgeries, even when that attacker has infinite com-
putational power.

Also like a one-time pad, the security argument relies on
two very important properties about the keys a, b:

• They have to be truly random.

• They have to be used at most once.

Re-using a and b

Weʼll illustrate that our example MAC is insecure if it is
used to authenticate two messagesm1,m2 with the same key
(a, b):

t1 ≡ m1 · a+ b (mod p)

t2 ≡ m2 · a+ b (mod p)

An attacker can reconstruct a, b with some simple modular
arithmetic:2

t1 − t2 ≡ (m1 · a+ b)− (m2 · a+ b) (mod p)

⇓ (remove parentheses)
t1 − t2 ≡ m1 · a+ b−m2 · a− b (mod p)

⇓ (b and−b cancel out)
t1 − t2 ≡ m1 · a−m2 · a (mod p)

⇓ (factor out a)
t1 − t2 ≡ a · (m1 −m2) (mod p)

⇓ (flip sides, multiply by inverse of (m1 −m2))
a ≡ (t1 − t2)(m1 −m2)

−1 (mod p)
2 For a refresher on modular arithmetic, including an explanation of

the modular inverse, please refer to the appendix (page 186).
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Plugging a into either the equation for t1 or t2 gets b:

t1 ≡ m1 · a+ b (mod p)

⇓ (reorder terms)
b ≡ t1 −m1 · a (mod p)

As you can see, as with one-time pads, re-using the key
even once leads to a complete failure of the cryptosystem
to preserve privacy or integrity, as the case may be. As a re-
sult, one-time MACs are a bit dangerous to use directly. For-
tunately, this weakness can be solved with a construction
called a Carter-WegmanMAC, which weʼll see in the next sec-
tion.

11.6 Carter-WegmanMAC

As weʼve already stated, the obvious problem with one-time
MACs is their limited practicality. Fortunately, it turns out
that there is a construction, called a Carter-Wegman MAC,
that turns any secure one-time MAC into a secure many-time
MAC while preserving most of the performance benefit.

The idea behind a Carter-WegmanMAC is that you can use
a one-time MAC O to produce a tag for the bulk of the data,
and then encrypt a nonce n with a pseudorandom function
F , such as a block cipher, to protect that one-time tag:

CW ((k1, k2), n,M) = F (k1, n)⊕O(k2,M)

As long as F is a secure pseudorandom function, the nonce s̓
encryption is totally unpredictable. In the eyes of an at-
tacker, that means the XOR operation will randomly flip the
bits of the one-time MAC tag O(k2,M). Because this masks
the real value of the one-time MAC tag, the attacker can not
perform the algebraic tricks we saw for one-timeMACs recov-
ering the key when it is used more than once.

Keep in mind that while Carter-Wegman MACs take two
distinct keys k1 and k2, and that Carter-Wegman MACs are re-
lated to one-time MACs, some of which also take two distinct
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keys a and b, they are not the same two keys. The Carter-
Wegman MAC s̓ k2 is the only key passed to the fast one-time
MAC O. If that fast one-time MAC is our earlier example that
takes two keys a and b, that k2 would have to get split up into
those two keys. The Carter-Wegman MAC key would then be
(k1, k2) = (k1, (a, b)).

You can tell how a Carter-Wegman MAC exploits the ben-
efits of both kinds of MACs by considering the two terms of
the equation separately. In F (k1, n), F is just a regular pseu-
dorandom function, such as a block cipher. It is quite slow
by comparison to the one-time MAC. However, its input, the
nonce, is very small. The unpredictable output of the block
cipher masks the output of the one-time MAC. In the second
term, O(k2,M), the large input message M is only handled
by the very fast one-time MAC O.

These constructions, in particular Poly1305-AES, cur-
rently represent some of the state of the art in MAC func-
tions. The paper ([BHK+99]) and RFC ([BHK+]) for an older,
related MAC function called UMAC may also be good sources
of extra background information, since they go into ex-
tensive details of the hows and whys of a practical Carter-
Wegman MAC.

11.7 Authenticated encryptionmodes

So far, weʼve always clearly distinguished encryption from
authentication, and explained the need for both. The major-
ity of secure connections that are set up every day have that
distinction as well: they treat encryption and authentication
as fundamentally different steps.

Alternatively, we could make authentication a funda-
mental part of the mode of operation. After all, weʼve already
seen that unauthenticated encryption is virtually never what
you want; it is, at best, something you occasionally have to
live with. It makes sense to use constructions that not only
guarantee the privacy of an arbitrary stream, but also its in-
tegrity.
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As weʼve already seen, many of the methods of compos-
ing authentication and encryption are inherently insecure.
By doing that in a fixed, secure way such as a properly de-
signed authenticated encryption mode, an application de-
veloper no longer has to make that choice, which means they
also canʼt inadvertently make the wrong choice.

AEAD

AEAD is a feature of certain modes of authenticated encryp-
tion. Such modes of operation are called AEAD modes. It
starts with the premise that many messages actually consist
of two parts:

• The actual content itself

• Metadata: data about the content

In many cases the metadata should be plaintext, but
the content itself should be encrypted. The entire message
should be authenticated: it should not be possible for an at-
tacker to mess with the metadata and have the resulting mes-
sage still be considered valid.

Consider an e-mail alternative as an example cryptosys-
tem. The metadata about the content might contain the in-
tended recipient. We definitely want to encrypt and authen-
ticate the content itself, so that only the recipient can read
it. The metadata, however, has to be in plaintext: the e-
mail servers performing the message delivery have to know
which recipient to send the message to.

Many systems would leave this metadata unauthenti-
cated, allowing attackers to modify it. In our case, that looks
like it may just lead to messages being delivered to the wrong
inbox. That also means that an attacker can force e-mail to
be delivered to the wrong person, or not delivered at all.

AEAD modes address this issue by providing a specified
way to add metadata to encrypted content, so that the whole
of the encrypted content and the metadata is authenticated,
and not the two pieces separately:
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11.8 OCBmode

This is an optional, in-depth section. It
almost certainly wonʼt help you write bet-
ter software, so feel free to skip it. It is only
here to satisfy your inner geek s̓ curiosity.

Usually, you will want to use a much more high level cryp-
tosystem, such as OpenPGP, NaCl or TLS.

OCB mode is an AEAD mode of operation. It is one of the
earliest developed AEAD modes.

As you can see, most of this scheme looks quite similar to
ECBmode. The name OCB is quite similar to electronic code-
book, as well. OCB does not share the security issues ECB
mode has, however, as there are several important differ-
ences, such as the offsets ∆i introduced in each individual
block encryption.

Being an AEAD mode, OCB mode provides a cryptograph-
ically secure authentication tag t, which is built from X, a
very simple (not cryptographically secure by itself) check-
sum of the plaintext. There is also another, separate tag ta,
which authenticates the AEAD associated data. That associ-
ated data tag ta is computed as follows:

This design has a number of interesting properties. For
example, it is very fast: only requiring roughly one block
cipher operation per encrypted or associate data block, as
well as one additional block cipher operation for the final
tag. The offsets (∆i) are also extremely easy to compute. The
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checksum blockX is just all of the plaintext blocksPi XORed
together. Finally, OCB mode is easy to compute in parallel;
only the final authentication tag is dependent on all the pre-
ceding information.

OCB mode also comes with a built-in padding scheme: it
behaves slightly differently when the plaintexts or authen-
tication text is not exactly a multiple of the block size. This
means that, unlike with PKCS#5/PKCS#7 padding, there isnʼt
an entire block of “wasted” padding if the plaintext happens
to be a multiple of the block size.

Despite having several interesting properties going for
it, OCB mode has not received as much attention as some
of the alternatives; one of the main reasons being that it
is patent encumbered. Even though a number of patent li-
censes are available, including a free-of-charge one for open
source software, this does not appear to have significantly
impacted how much OCB mode is used in the field. [Rog]
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11.9 GCMmode

This is an optional, in-depth section. It
almost certainly wonʼt help you write bet-
ter software, so feel free to skip it. It is only
here to satisfy your inner geek s̓ curiosity.

Usually, you will want to use a much more high level cryp-
tosystem, such as OpenPGP, NaCl or TLS.

GCM mode is an AEAD mode with an unfortunate case
of RAS (redundant acronym syndrome) syndrome: GCM it-
self stands for “Galois Counter Mode”. It is formalized in a
NIST Special Publication [gcm07] and roughly boils down to
a combination of classical CTR mode with a Carter-Wegman
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MAC. That MAC can be used by itself as well, which is called
GMAC.

Authentication

GCM mode (and by extension GMAC)
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Signature algorithms

12.1 Description

A signature algorithm is the public-key equivalent of a mes-
sage authentication code. It consists of three parts:

1. a key generation algorithm, which can be shared with
other public-key algorithms

2. a signature generation algorithm

3. a signature verification algorithm

Signature algorithms can be built using encryption algo-
rithms. Using the private key, we produce a value based on
the message, usually using a cryptographic hash function.
Anyone can then use the public key to retrieve that value,
compute what the value should be from the message, and
compare the two to verify. The obvious difference between
this and public-key encryption is that in signing, the private
key is used to produce the message (in this case the signa-
ture) and the public key is used to interpret it, which is the
opposite of how encryption and decryption work.
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The above explanation glosses over many important de-
tails. Weʼll discuss real schemes in more detail below.

12.2 RSA-based signatures

PKCS#1 v1.5

TODO (see #48)

PSS

TODO (see #49)

12.3 DSA

The Digital Signature Algorithm (DSA) is a US Federal Gov-
ernment standard for digital signatures. It was first pro-
posed by the National Institute of Standards and Technology
(NIST) in 1991, to be used in the Digital Signature Standard
(DSS). The algorithm is attributed to David W. Kravitz, a for-
mer technical advisor at the NSA.

DSA key generation happens in two steps. The first step
is a choice of parameters, which can be shared between
users. The second step is the generation of public and pri-
vate keys for a single user.

Parameter generation

We start by picking an approved cryptographic hash func-
tion H. We also pick a key length L and a prime length N .
While the original DSS specified that L be between 512 and
1024, NIST now recommends a length of 3072 for keys with a
security lifetime beyond 2030. As L increases, so should N .

Next we choose a prime q of length N bits; N must be
less than or equal to the length of the hash output. We also
pick an L-bit prime p such that p− 1 is a multiple of q.
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The last part is the most confusing. We have to find a
number g whose multiplicative order (page 201) (mod p) is
q. The easy way to do this is to set g ≡ 2(p−1)/q (mod p). We
can try another number greater than 2, and less than p − 1,
if g comes out to equal 1.

Once we have parameters (p, q, g), they can be shared be-
tween users.

Key generation

Armed with parameters, it s̓ time to compute public and pri-
vate keys for an individual user. First, select a random xwith
0 < x < q. Next, calculate y where y ≡ gx (mod p). This de-
livers a public key (p, q, g, y), and private key x.

Signing amessage

In order to sign a message, the signer picks a random k be-
tween 0 and q. Picking that k turns out to be a fairly sensitive
and involved process; but weʼll go into more detail on that
later. With k chosen, they then compute the two parts of the
signature r, s of the message m:

r ≡ (gk (mod p)) (mod q)

s ≡ k−1(H(m) + xr) (mod q)

If either of these happen to be 0 (a rare event, with 1 in q
odds, and q being a pretty large number), pick a different k.

TODO: Talk about k-1, the modular inverse (see #52)

Verifying a signature

Verifying the signature is a lot more complex. Given the mes-
sage m and signature (r, s):

w ≡ s−1 (mod q)

u1 ≡ wH(m) (mod q)
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u2 ≡ wr (mod q)

v ≡ (gu1yu2 (mod p)) (mod q)

If the signature is valid that final result v will be equal to r,
the second part of the signature.

The trouble with k

While there is nothing wrong with DSA done right, it s̓ very
easy to get it wrong. Furthermore, DSA is quite sensitive:
even a small implementation mistake results in a broken
scheme.

In particular, the choice of the signature parameter k is
critical. The requirements for this number are among the
strictest of all random numbers in cryptographic algorithms.
For example, many algorithms require a nonce. A nonce just
has to be unique: you can use it once, and then you can
never use it again. It doesnʼt have to be secret. It doesnʼt
even have to be unpredictable. A nonce can be implemented
by a simple counter, or a monotonic clock. Many other al-
gorithms, such as CBC mode, use an initialization vector. It
doesnʼt have to be unique: it only has to be unpredictable. It
also doesnʼt have to be secret: initialization vectors are typi-
cally tacked on to the ciphertext. DSA̓s requirements for the
k value are a combination of all of these:

• It has to be unique.

• It has to be unpredictable.

• It has to be secret.

Muddle with any of these properties, and an attacker
can probably retrieve your secret key, even with a modest
amount of signatures. For example, an attacker can recover
the secret key knowing only a few bits of k, plus a large
amount of valid signatures. [NS00]
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It turns out that many implementations of DSA donʼt
even get the uniqueness part right, happily reusing k val-
ues. That allows a direct recovery of the secret key using
basic arithmetic. Since this attack is much simpler to under-
stand, very commonly applicable, and equally devastating,
weʼll discuss it in detail.

Suppose that an attacker sees multiple signatures (ri, si),
for different messages mi, all with the same k. The attacker
picks any two signatures (r1, s1) and (r2, s2) of messages m1

and m2 respectively. Writing down the equations for s1 and
s2:

s1 ≡ k−1(H(m1) + xr1) (mod q)

s2 ≡ k−1(H(m2) + xr2) (mod q)

The attacker can simplify this further: r1 and r2 must be
equal, following the definition:

ri ≡ gk (mod q)

Since the signer is reusing k, and the value of r only depends
on k, all ri will be equal. Since the signer is using the same
key, x is equal in the two equations as well.

Subtract the two si equations from each other, followed
by some other arithmetic manipulations:

s1 − s2 ≡ k−1(H(m1) + xr)− k−1(H(m2) + xr) (mod q)

≡ k−1 ((H(m1) + xr)− (H(m2) + xr)) (mod q)

≡ k−1(H(m1) + xr −H(m2)− xr) (mod q)

≡ k−1(H(m1)−H(m2)) (mod q)

This gives us the simple, direct solution for k:

k ≡ (H(m1)−H(m2)) (s1 − s2)
−1 (mod q)

The hash values H(m1) and H(m2) are easy to compute.
Theyʼre not secret: the messages being signed are public.
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The two values s1 and s2 are part of the signatures the at-
tacker saw. So, the attacker can compute k. That doesnʼt
give him the private key x yet, though, or the ability to forge
signatures.

Let s̓ write the equation for s down again, but this time
thinking of k as something we know, and x as the variable
weʼre trying to solve for:

s ≡ k−1(H(m) + xr) (mod q)

All (r, s) that are valid signatures satisfy this equation, so we
can just take any signature we saw. Solve for x with some
algebra:

sk ≡ H(m) + xr (mod q)

sk −H(m) ≡ xr (mod q)

r−1(sk −H(m)) ≡ x (mod q)

Again, H(m) is public, plus the attacker needed it to com-
pute k, anyway. Theyʼve already computed k, and s is
plucked straight from the signature. That just leaves us with
r−1 (mod q) (read as: “the modular inverse of r modulo q”),
but that can be computed efficiently as well. (For more in-
formation, see the appendix on modular arithmetic; keep in
mind that q is prime, so the modular inverse can be com-
puted directly.) That means that the attacker, once theyʼve
discovered the k of any signature, can recover the private
key directly.

So far, weʼve assumed that the broken signer would al-
ways use the same k. To make matters worse, a signer only
has to re-use k once in any two signatures that the attacker
can see for the attack to work. As weʼve seen, if k is repeated,
the ri values repeat as well. Since ri is a part of the signature,
it s̓ very easy to see when the signer has made this mistake.
So, even if reusing k is something the signer only does rarely
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(because their random number generator is broken, for ex-
ample), doing it once is enough for the attacker to break the
DSA scheme.

In short, reusing the k parameter of a DSA signing oper-
ation means an attacker recovers the private key.

TODO: Debian http://rdist.root.org/2009/05/
17/the-debian-pgp-disaster-that-almost-was/

12.4 ECDSA

TODO: explain (see #53)
As with regular DSA, the choice of k is extremely critical.

There are attacks that manage to recover the signing key us-
ing a few thousand signatures when only a few bits of the
nonce leak. [MHMP13]

12.5 Repudiable authenticators

Signatures like the ones we described above provide a prop-
erty called non-repudiation. In short, it means that you canʼt
later deny being the sender of the signed message. Anyone
can verify that the signature was made using your private
key, something only you could do.

That may not always be a useful feature; it may be more
prudent to have a scheme where only the intended recipient
can verify the signature. An obvious way to design such a
scheme would be to make sure that the recipient (or, in fact,
anyone else) could have computed an identical value.

Such messages can be repudiated; such a scheme is often
called “deniable authentication”. While it authenticates the
sender to the intended recipient, the sender can later deny
(to third parties) having sent the message. Equivalently, the
recipient canʼt convince anyone else that the sender sent that
particular message.

http://rdist.root.org/2009/05/17/the-debian-pgp-disaster-that-almost-was/
http://rdist.root.org/2009/05/17/the-debian-pgp-disaster-that-almost-was/


13

Key derivation functions

13.1 Description

A key derivation function is a function that derives one or
more secret values (the keys) from one secret value.

Many key derivation functions can also take a (usually op-
tional) salt parameter. This parameter causes the key deriva-
tion function to not always return the same output keys for
the same input secret. As with other cryptosystems, salts
are fundamentally different from the secret input: salts gen-
erally do not have to be secret, and can be re-used.

Key derivation functions can be useful, for example,
when a cryptographic protocol starts with a single secret
value, such as a shared password or a secret derived using
Diffie-Hellman key exchange, but requires multiple secret
values to operate, such as encryption and MAC keys. An-
other use case of key derivation functions is in cryptograph-
ically secure random number generators, which weʼll see in
more detail in a following chapter, where they are used to
extract randomness with high entropy density from many
sources that each have low entropy density.
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There are two main categories of key derivation func-
tions, depending on the entropy content of the secret value,
which determines how many different possible values the
secret value can take.

If the secret value is a user-supplied password, for exam-
ple, it typically contains very little entropy. There are very
few values the password will take. As weʼve already estab-
lished in a previous section on password storage (page 104), that
means it is necessary that the key derivation function is hard
to compute. That means it requires a non-trivial amount of
computing resources, such as CPU cycles or memory. If the
key derivation function were easy to compute, an attacker
could simply enumerate all possible values of the shared se-
cret, since there are few possibilities, and then compute the
key derivation function for all of them. As weʼve seen in that
previous section on password storage, this is how most mod-
ern attacks on password stores work. Using an appropriate
key derivation function would prevent these attacks. In this
chapter, weʼll see scrypt, as well as other key derivation func-
tions in this category.

On the other hand, the secret value could also have a
high entropy content. For example, it could be a shared se-
cret derived from a Diffie-Hellman key agreement protocol,
or an API key consisting of cryptographically random bytes
(weʼll discuss cryptographically secure random number gen-
eration in the next chapter). In that case, it isnʼt necessary to
have a key derivation function that s̓ hard to compute: even
if the key derivation function is trivial to compute, there are
too many possible values the secret can take, so an attacker
would not be able to enumerate them all. Weʼll see the best-
of-breed of this kind of key derivation function, HKDF, in
this chapter.

13.2 Password strength

TODO: NIST Special Publication 800-63



CHAPTER 13. KEY DERIVATION FUNCTIONS 139

13.3 PBKDF2

13.4 bcrypt

13.5 scrypt

13.6 HKDF

The HKDF, defined in RFC 5869 [KE] and explained in detail
in a related paper [Kra10], is a key derivation function de-
signed for high entropy inputs, such as shared secrets from a
Diffie-Hellman key exchange. It is specifically not designed
to be secure for low-entropy inputs such as passwords.

HKDF exists to give people an appropriate, off-the-shelf
key derivation function. Previously, key derivation was of-
ten something that was done ad hoc for a particular standard.
Usually these ad hoc solutions did not have the extra provi-
sions HKDF does, such as salts or the optional info parame-
ter (which weʼll discuss later in this section); and that s̓ only
in the best case scenario where the KDF wasnʼt fundamen-
tally broken to begin with.

HKDF is based on HMAC. Like HMAC, it is a generic con-
struction that uses hash functions, and can be built using
any cryptographically secure hash function you want.

A closer look at HKDF

This is an optional, in-depth section. It
almost certainly wonʼt help you write bet-
ter software, so feel free to skip it. It is only
here to satisfy your inner geek s̓ curiosity.

HKDF consists of two phases. In the first phase, called the
extraction phase, a fixed-length key is extracted from the in-



CHAPTER 13. KEY DERIVATION FUNCTIONS 140

put entropy. In the second phase, called the expansion phase,
that key is used to produce a number of pseudorandom keys.

The extraction phase

The extraction phase is responsible for extracting a small
amount of data with a high entropy content from a poten-
tially large amount of data with a smaller entropy density.

The extraction phase just uses HMAC with a salt:

def extract(salt, data):
return hmac(salt, data)

The salt value is optional. If the salt is not specified, a
string of zeroes equal to the length of the hash functions̓ out-
put is used. While the salt is technically optional, the design-
ers stress its importance, because it makes the independent
uses of the key derivation function (for example, in different
applications, or with different users) produce independent
results. Even a fairly low-entropy salt can already contribute
significantly to the security of the key derivation function.
[KE] [Kra10]

The extraction phase explains why HKDF is not suitable
for deriving keys from passwords. While the extraction
phase is very good at concentrating entropy, it is not capable
of amplifying entropy. It is designed for compacting a small
amount of entropy spread out over a large amount of data
into the same amount of entropy in a small amount of data,
but is not designed for creating a set of keys that are diffi-
cult to compute in the face of a small amount of available
entropy. There are also no provisions for making this phase
computationally intensive. [KE]

In some cases, it is possible to skip the extraction phase,
if the shared secret already has all the right properties,
for example, if it is a pseudorandom string of sufficient
length, and with sufficient entropy. However, sometimes
this should not be done at all, for example when dealing with
a Diffie-Hellman shared secret. The RFC goes into slightly
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more detail on the topic of whether or not to skip this step;
but it is generally inadvisable. [KE]

The expansion phase

In the expansion phase, the random data extracted from the
inputs in the extraction phase is expanded into as much data
as is required.

The expansion step is also quite simple: chunks of data
are produced using HMAC, this time with the extracted se-
cret, not with the public salt, until enough bytes are pro-
duced. The data being HMACed is the previous output (start-
ing with an empty string), an “info” parameter (by default
also the empty string), and a counter byte that counts which
block is currently being produced.

def expand(key, info=””):
”””Expands the key, with optional info.”””
output = ””
for byte in map(chr, range(256)):

output = hmac(key, output + info + byte)
yield output

def get_output(desired_length, key, info=””):
”””Collects output from the expansion step�

↪→until enough
has been collected; then returns that output.

↪→”””
outputs, current_length = [], 0
for output in expand(key, info):

outputs.append(output)
current_length += len(output)

if current_length >= desired_length:
break

else:
# This block is executed when the for�

↪→loop *isn't*
# terminated by the ``break`` statement,

↪→ which
(continues on next page)
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(continued from previous page)
# happens when we run out of ``expand``�

↪→outputs
# before reaching the desired length.
raise RuntimeError(”Desired length too�

↪→long”)

return ””.join(outputs)[:desired_length]

Like the salt in the extraction phase, the “info” parame-
ter is entirely optional, but can actually greatly increase the
security of the application. The “info” parameter is intended
to contain some application-specific context in which the
key derivation function is being used. Like the salt, it will
cause the key derivation function to produce different val-
ues in different contexts, further increasing its security. For
example, the info parameter may contain information about
the user being dealt with, the part of the protocol the key
derivation function is being executed for or the like. [KE]
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Random number
generators

The generation of random numbers is too impor-
tant to be left to chance.

Robert R. Coveyou

14.1 Introduction

Many cryptographic systems require random numbers. So
far, weʼve just assumed that theyʼre available. In this chapter,
weʼll go more in depth about the importance and mechanics
of random numbers in cryptographic systems.

Producing random numbers is a fairly intricate process.
Like with so many other things in cryptography, it s̓ quite
easy to get it completely wrong but have everything look com-
pletely fine to the untrained eye.

There are three categories of random number genera-
tion that weʼll consider separately:

• True random number generators
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• Cryptographically secure pseudorandom number gen-
erators

• Pseudorandom number generators

14.2 True random number generators

Any one who considers arithmetical methods of
producing random digits is, of course, in a state
of sin.

John von Neumann

John von Neumann, father of the modern model of
computing, made an obvious point. We canʼt expect to
produce random numbers using predictable, deterministic
arithmetic. We need a source of randomness that isnʼt a con-
sequence of deterministic rules.

True random number generators get their randomness
from physical processes. Historically, many systems have
been used for producing such numbers. Systems like dice
are still in common use today. However, for the amount of
randomness we need for practical cryptographic algorithms,
these are typically far too slow, and often quite unreliable.

Weʼve since come up with more speedy and reliable
sources of randomness. There are several categories of
physical processes that are used for hardware random num-
ber generation:

• Quantum processes

• Thermal processes

• Oscillator drift

• Timing events

Keep in mind that not all of these options necessarily gen-
erate high-quality, truly random numbers. Weʼll elaborate
further on how they can be applied successfully anyway.
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Radioactive decay

One example of a quantum physical process used to pro-
duce random numbers is radioactive decay. We know that
radioactive substances will slowly decay over time. It s̓ im-
possible to know when the next atom will decay; that pro-
cess is entirely random. Detecting when such a decay has
occurred, however, is fairly easy. By measuring the time be-
tween individual decays, we can produce random numbers.

Shot noise

Shot noise is another quantum physical process used to pro-
duce random numbers. Shot noise is based on the fact that
light and electricity are caused by the movement of indivisi-
ble little packets: photons in the case of light, and electrons
in the case of electricity.

Nyquist noise

An example of a thermal process used to produce random
numbers is Nyquist noise. Nyquist noise is the noise that
occurs from charge carriers (typically electrons) traveling
through a medium with a certain resistance. That causes
a tiny current to flow through the resistor (or, alternatively
put, causes a tiny voltage difference across the resistor).

i =

√
4kBT∆f

R

v =
√

4kBTR∆f

These formulas may seem a little scary to those who havenʼt
seen the physics behind them before, but donʼt worry too
much: understanding them isnʼt really necessary to go along
with the reasoning. These formulas are for the root mean
square. If youʼve never heard that term before, you can
roughly pretend that means “average”. ∆f is the bandwidth,
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T is the temperature of the system in Kelvins, kB is Boltz-
manns̓ constant.

As you can see from the formula, Nyquist noise is ther-
mal, or temperature-dependent. Fortunately, an attacker
generally canʼt use that property to break the generator: the
temperature at which it would become ineffective is so low
that the system using it has probably already failed at that
point.

By evaluating the formula, we can see that Nyquist
noise is quite small. At room temperature with reasonable
assumptions (10 kHz bandwidth and a 1kΩ resistor), the
Nyquist voltage is in the order of several hundred nanovolts.
Even if you round up liberally to a microvolt (a thousand
nanovolts), that s̓ still a thousandth of a thousandth of a volt,
and even a tiny AA battery produces 1.5V.

While the formulas describe the root mean square, the
value you can measure will be randomly distributed. By re-
peatedly measuring it, we can produce high-quality random
numbers. For most practical applications, thermal noise
numbers are quite high quality and relatively unbiased.

TODO: weʼve never actually explained the word entropy;
“resistance an attacker perceives” is necessary in a good def-
inition

TODO: explain synchronous stream ciphers as CSPRNGs

14.3 Cryptographically secure pseudoran-
dom generators

While weʼll see several examples of cryptographically secure
pseudorandom generators in the next few sections, keep in
mind that they are all just algorithms that could be used.
As an application developer, you should never be making a
choice between one of them.

Instead, in the few cases you really want to pick a random
number manually, you should always use the cryptographi-
cally secure random number generator provided by your op-
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erating system: /dev/urandom on *NIX (Linux, BSDs, and
OS X), or CryptGenRandom on Windows. Python provides
handy interfaces to these in the form of os.urandom and
random.SystemRandom.

While they can be implemented securely, try to avoid
using userspace cryptographically secure random number
generators such as the one in OpenSSL. There are far more
things that can go wrong with them, usually involving their
internal state: either they remain uninitialized, poorly ini-
tialized, or end up re-using the same state in different lo-
cations. In all of these cases, the resulting cryptosystem is
completely and utterly broken.

TODO: talk about the FUD in the Linux man page for
urandom

This is an optional, in-depth section. It
almost certainly wonʼt help you write bet-
ter software, so feel free to skip it. It is only
here to satisfy your inner geek s̓ curiosity.

Since this is a specific cryptograph-
ically secure pseudorandom number generator algo-
rithm, you donʼt actually need to know how it works to
write good software. Just use ~urandom~.

14.4 Yarrow

This is an optional, in-depth section. It
almost certainly wonʼt help you write bet-
ter software, so feel free to skip it. It is only
here to satisfy your inner geek s̓ curiosity.

The Yarrow algorithm is a cryptographically secure pseudo-
random number generator.

TODO: actually explain Yarrow
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This algorithm is used as the CSPRNG for FreeBSD, and
was inherited by Mac OS X. On both of these operating
systems, it s̓ used to implement /dev/random. Unlike on
Linux, /dev/urandom is just an alias for /dev/random.

14.5 Blum Blum Shub

TODO: explain this, and why it s̓ good (provable), but why we
donʼt use it (slow)

14.6 Dual_EC_DRBG

This is an optional, in-depth section. It
almost certainly wonʼt help you write bet-
ter software, so feel free to skip it. It is only
here to satisfy your inner geek s̓ curiosity.

Dual_EC_DRBG is a NIST standard for a cryptographically
secure pseudorandom bit generator. It sparked a large
amount of controversy: despite being put forth as an offi-
cial, federal cryptographic standard, it quickly became evi-
dent that it wasnʼt very good.

Cryptanalysis eventually demonstrated that the standard
could contain a back door hidden in the constants specified
by the standard, potentially allowing an unspecified attacker
to completely break the random number generator.

Several years afterwards, leaked documents suggested a
backdoor in an unnamed NIST standard released in the same
year as Dual_EC_DRBG, fueling the suspicions further. This
led to an official recommendation from the standards body
to stop using the standard, which was previously unheard of
under such circumstances.
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Background

For a long time, the official standards produced by NIST
lacked good, modern cryptographically secure pseudoran-
dom number generators. It had a meager choice, and the
ones that had been standardized had several serious flaws.

NIST hoped to address this issue with a new publication
called SP 800-90, that contained several new cryptographi-
cally secure pseudorandom number generators. This docu-
ment specified a number of algorithms, based on different
cryptographic primitives:

1. Cryptographic hash functions

2. HMAC

3. Block ciphers

4. Elliptic curves

Right off the bat, that last one jumps out. Using elliptic
curves for random number generation was unusual. Stan-
dards like these are expected to be state-of-the-art, while still
staying conservative. Elliptic curves had been considered
before in an academic context, but that was a far cry from
being suggested as a standard for common use.

There is a second reason elliptic curves seem strange.
HMAC and block ciphers are obviously symmetric algo-
rithms. Hash functions have their applications in asymmet-
ric algorithms such as digital signatures, but arenʼt them-
selves asymmetric. Elliptic curves, on the other hand, are
exclusively used for asymmetric algorithms: signatures, key
exchange, encryption.

That said, the choice didnʼt come entirely out of the blue.
A choice for a cryptographically secure pseudorandom num-
ber generator with a strong number-theoretical basis isnʼt
unheard of: Blum Blum Shub is a perfect example. Those
generators are typically much slower than the alternatives.
Dual_EC_DRBG, for example, is three orders of magnitude
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slower than its peers presented in the same standard. The
idea is that the extra confidence inspired by the stronger
mathematical guarantees is worth the performance penalty.
For example, weʼre fairly confident that factoring numbers
is hard, but weʼre a lot less sure about our hash functions
and ciphers. RSA came out in 1977 and has stood the test
of time quite well since then. DES came out two years later,
and is now considered completely broken. MD4 and MD5
came out over a decade later, and are completely broken as
well.

The problem is, though, that the standard didnʼt actually
provide the security proof. The standard specifies the gen-
erator but then merely suggests that it would be at least as
hard as solving the elliptic curve discrete log problem. Blum
Blum Shub, by contrast, has a proof that shows that break-
ing it is at least as hard as solving the quadratic residuosity
problem. The best algorithm we have for that is factoring
numbers, which weʼre fairly sure is pretty hard.

The omission of the proof is a bit silly, because there s̓
no reason youd̓ use a pseudorandom number generator as
slow as Dual_EC_DRBG unless you had proof that you were
getting something in return for the performance hit.

Cryptographers later did the homework that NIST should
have provided in the specification [SS06] [BGjosteen07].
Those analyses quickly highlighted a few issues.

A quick overview of the algorithm

The algorithm consists of two parts:

1. Generating pseudorandom points on the elliptic curve,
which are turned into the internal state of the genera-
tor;

2. Turning those points into pseudorandom bits.

Weʼll illustrate this graphically, with an illustration
based on the work by Shumow and Ferguson, two cryptog-
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raphers who highlighted some of the major issues with this
algorithm:

Throughout the algorithm, ϕ is a function that takes a
curve point and turns it into an integer. The algorithm needs
two given points on the curve: P andQ. These are fixed, and
defined in the specification. The algorithm has an internal
state s. When producing a new block of bits, the algorithm
turns s into a different value r using the ϕ function and ellip-
tic curve scalar multiplication with P :

r = ϕ(sP )

That value, r, is used both for producing the output bits and
updating the internal state of the generator. In order to pro-
duce the output bits, a different elliptic curve point, Q, is
used. The output bits are produced by multiplying r with Q,
and running the result through a transformation θ:

o = θ(ϕ(rQ))

In order to perform the state update, r is multiplied with P
again, and the result is converted to an integer. That integer
is used as the new state s.

s = ϕ(rP )

Issues and questionmarks

First of all, ϕ is extremely simple: it just takes the x coordi-
nate of the curve point, and discards the y coordinate. That
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means that it s̓ quite easy for an attacker who sees the output
value of ϕ to find points that could have produced that value.
In itself, that s̓ not necessarily a big deal; but, as weʼll see, it s̓
one factor that contributes to the possibility of a backdoor.

Another flaw was shown where points were turned into
pseudorandom bits. The θ function simply discards the 16
most significant bits. Previous designs discarded signifi-
cantly more: for 256-bit curves such as these, they discarded
somewhere in the range of 120 and 175 bits.

Failing to discard sufficient bits gave the generator a
small bias. The next-bit property was violated, giving attack-
ers a better than 50% chance of guessing the next bit cor-
rectly. Granted, that chance was only about one in a thou-
sand better than 50%; but that s̓ still unacceptable for what s̓
supposed to be the state-of-the-art in cryptographically se-
cure pseudorandom number generators.

Discarding only those 16 bits has another consequence.
Because only 16 bits were discarded, we only have to guess
216 possibilities to find possible values of ϕ(rQ) that pro-
duced the output. That is a very small number: we can sim-
ply enumerate all of them. Those values are the outputs of
ϕ, which as we saw just returns the x coordinate of a point.
Since we know it came from a point on the curve, we just
have to check if our guess is a solution for the curve equa-
tion:

y2 ≡ x3 + ax+ b (mod p)

The constants a, b, p are specified by the curve. Weʼve just
guessed a value for x, leaving only one unknown, y. We
can solve that quite efficiently. We compute the right hand
side and see if it s̓ a perfect square: y2 ≡ q ≡

√
x3 + ax+ b

(mod p). If it is, A = (x,
√
q) = (x, y) is a point on the curve.

This gives us a number of possible points A, one of which is
rQ used to produce the output.

This isnʼt a big deal at face value. To find the state of the
algorithm, an attacker needs to find r, so they can compute



CHAPTER 14. RANDOM NUMBER GENERATORS 153

s. They still need to solve the elliptic curve discrete log prob-
lem to find r from rQ, givenQ. Weʼre assuming that problem
is hard.

Keep in mind that elliptic curves are primitives used for
asymmetric encryption. That problem is expected to be
hard to solve in general, but what if we have some extra in-
formation? What if there s̓ a secret value e so that eQ = P ?

Let s̓ put ourselves in the shoes of an attacker knowing e.
We repeat our math from earlier. One of those points A we
just found is the rQ weʼre looking for. We can compute:

ϕ(eA) ≡ ϕ(erQ) ≡ ϕ(rP ) (mod p)

That last step is a consequence of the special relationship
between e, P,Q. That s̓ pretty interesting, because ϕ(rP ) is
exactly the computation the algorithm does to compute s,
the new state of the algorithm! That means that an attacker
that knows e can, quite efficiently, compute the new state s
from any output o, allowing them to predict all future values
of the generator!

This assumes that the attacker knows whichA is the right
A. Because only 16 bits were discarded there are only 16 bits
left for us to guess. That gives us 216 candidate x coordinates.
Experimentally, we find that roughly half of the possible x
coordinates correspond to points on the curve, leaving us
with 215 possible curve points A, one of which is rQ. That s̓ a
pretty small number for a bit of computer-aided arithmetic:
plenty small for us to try all options. We can therefore say
that an attacker that does know the secret value e most defi-
nitely can break the generator.

So, weʼve now shown that if there is a magical e for which
eQ = P , and you can pick P and Q (and you donʼt have to
explain where you got them from), that you could break the
generator. How do you pick such values?

To demonstrate just how possible it is, the researchers
started from the NIST curve s̓ P and p values, but came up
with their ownQ′. They did this by starting withP , picking a
random d (keeping it secret), and setting Q′ = dP . The trick
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is that there s̓ an efficient algorithm for computing e in eQ′ =
P if you know the d in Q′ = dP . This is the e we need for our
earlier attack. When they tried this out, they discovered that
in all cases (that is, for many random d), seeing 32 bytes of
output was enough to determine the state s.

All of this, of course, only demonstrates that it is possi-
ble for the specified values of P and Q to be special values
with a secret back door. It doesnʼt provide any evidence that
the actual values have a backdoor in them. However, given
that the standard never actually explains how they got the
magical value for Q, it doesnʼt really inspire a lot of con-
fidence. Typically, cryptographic standards use “nothing-
up-my-sleeve” numbers, such as the value of some constant
such as π or the natural logarithm base, e.

If someone does know the backdoor, the consequences
are obviously devastating. Weʼve already argued for the ne-
cessity of cryptographically secure pseudorandom number
generators: having a broken one essentially means that all
cryptosystems that use this generator are completely and ut-
terly defeated.

There are two ways one might try to fix this particular
algorithm:

• Make the θ function more complex to invert, rather
than just discarding 16 bits. This makes it harder to
find candidate points, and hence, harder to perform
the attack. One obvious way would be to discard more
bits. Another option would be to use a cryptographi-
cally secure hash, or a combination of both.

• Generate randomQ every time you start the algorithm,
possibly by picking a random d and setting Q = dP . Of
course, d has to be sufficiently large and truly random:
if θ is unchanged, and there are only a few values d can
have, the attacker can just perform the above attack for
all values of d.
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Both of these are really just band-aid solutions; it would
be a much better idea to just use a different algorithm al-
together. These suggestions donʼt resolve the issue that it s̓
slow, exotic, and now a retracted standard.

Aftermath

TODO: Talk about RSA guy s̓ comments + snowden leaks

14.7 Mersenne Twister

Mersenne Twister is a very common pseudorandom number
generator. It has many nice properties, such as high perfor-
mance, a huge period1 of 219937−1 ≈ 4 ·106001, and it passes
all but the most demanding randomness tests. Despite all
of these wonderful properties, it is not cryptographically se-
cure.

An in-depth look at the Mersenne Twister

This is an optional, in-depth section. It
almost certainly wonʼt help you write bet-
ter software, so feel free to skip it. It is only
here to satisfy your inner geek s̓ curiosity.

To demonstrate why Mersenne Twister isnʼt cryptographi-
cally secure, weʼll take a look at how the algorithm works.
Fortunately, it s̓ not very complex.

The standard Mersenne Twister algorithm operates on
an internal state array S consisting of 624 unsigned 32-bit
integers, and an index i pointing to the current integer. It
consists of three steps:

1 The period of a pseudorandom number generator is how many ran-
dom numbers it produces before the entire sequence repeats.
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1. An optional initialization function, which produces an
initial state from a small random value called a seed.

2. A state generation function, which produces a new
state from the old state.

3. An extraction function, also called the tempering func-
tion, that produces a random number from the current
element of the state (the element pointed at by the in-
dex i).

Whenever the extraction function is called, the index to
the current integer is incremented. When all of the current
elements of the state have been used to produce a number,
the state initialization function is called again. The state ini-
tialization function is also called right before the first num-
ber is extracted.

So, to recap: the state is regenerated, then the extraction
function goes over each of the elements in the state, until it
runs out. This process repeats indefinitely.

TODO: illustrate
Weʼll look at each of the parts briefly. The exact work-

ings of them is outside the scope of this book, but weʼll
look at them just long enough to get some insight into why
Mersenne Twister is unsuitable as a cryptographically se-
cure random number generator.

The initialization function

The initialization function creates an instance of Mersenne
Twister s̓ state array, from a small initial random number
called a seed.

The array starts with the seed itself. Then, each next el-
ement is produced from a constant, the previous element,
and the index of the new element. Elements are produced
until there are 624 of them.

Here s̓ the Python source code:
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def uint32(n):
return 0xFFFFFFFF & n

def initialize_state(seed):
state = [seed]

for i in range(1, 624):
prev = state[-1]
elem = 0x6c078965 * (prev ^ (prev >>�

↪→30)) + i
state.append(uint32(elem))

return state

For those of you who havenʼt worked with Python or its
bitwise operators:

• >> and << are right-shift and left-shift

• & is binary AND: 0&0 = 0&1 = 1&0 = 0, and 1&1 = 1.

• ^ is binary XOR, ^= XORs and assigns the result to the
name on the left-hand side, so x ^= k is the same
thing as x = x ^ k.

REVIEW: Bitwise arithmetic appendix?

The state regeneration function

The state regeneration function takes the current state and
produces a new state. It is called right before the first num-
ber is extracted, and every time all 624 elements of the state
have been used up.

The Python source code for this function is fairly simple.
Note that it modifies the state array in place, instead of re-
turning a new one.

def regenerate(s):
for i in range(624):

y = s[i] & 0x80000000
(continues on next page)
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(continued from previous page)
y += s[(i + 1) % 624] & 0x7fffffff

z = s[(i + 397) % 624]
s[i] = z ^ (y >> 1)

if y % 2:
s[i] ^= 0x9908b0df

The % in an expression like s[(i + n) % 624] means
that a next element of the state is looked at, wrapping around
to the start of the state array if there is no next element.

The values 0x80000000 and 0x7fffffff have a spe-
cific meaning when interpreted as sequences of 32 bits.
0x80000000 has only the first bit set; 0x7fffffff has ev-
ery bit except the first bit set. Because these are bitwise
AND e̓d together (&), this effectively means that after the first
two lines in the loop, y consists of the first bit of the cur-
rent state element and all the subsequent bits of the next el-
ement.

The tempering function

The tempering function is applied to the current element of
the state before returning it as the produced random num-
ber. It s̓ easier to just show the code instead of explaining
how it works:

_TEMPER_MASK_1 = 0x9d2c5680
_TEMPER_MASK_2 = 0xefc60000

def temper(y):
y ^= uint32(y >> 11)
y ^= uint32((y << 7) & _TEMPER_MASK_1)
y ^= uint32((y << 15) & _TEMPER_MASK_2)
y ^= uint32(y >> 18)
return y

It may not be obvious, especially if youʼre not used to bi-
nary arithmetic, but this function is bijective or one-to-one:
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each 32 bit integer input maps to exactly one output, and vice
versa: for each 32 bit integer we get as an output there was
exactly one 32 bit integer it could have come from. Because
it uses right and left shifts, it might look like it throws away
data at first glance, and hence canʼt possibly be reversible.
It s̓ true that those shifts throw some bits away, however, the
critical operation here is the inline XOR (^=): those shifts are
just used to compute masks that the value to be tempered is
XORd̓ with. The XOR operations themselves are reversible,
and because each independent operation is reversible, their
composition is too.

Because the tempering function is one-to-one, there is
an inverse function: a function that gives you the untem-
pered equivalent of a number. It may not be obvious to you
how to construct that function unless youʼre a bitwise arith-
metic wizard, but that s̓ okay; in the worst case scenario we
could still brute-force it. Suppose we just try every single 32
bit integer, and remember the result in a table. Then, when
we get a result, we look it up in the table, and find the origi-
nal. That table would have to be at least 232 ·32 bits in length,
or a good 17 gigabytes; big, but not impossibly so.

Fortunately, there s̓ a much simpler method to compute
the inverse of the temper function. Weʼll see why that s̓ in-
teresting when we evaluate the cryptographic security of the
Mersenne Twister in the next section. For those interested
in the result, the untempering function looks like this:

def untemper(y):
y ^= y >> 18
y ^= ((y << 15) & _TEMPER_MASK_2)

y = _undo_shift_2(y)
y = _undo_shift_1(y)

return y

def _undo_shift_2(y):
t = y

(continues on next page)
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(continued from previous page)

for _ in range(5):
t <<= 7
t = y ^ (t & _TEMPER_MASK_1)

return t

def _undo_shift_1(y):
t = y

for _ in range(2):
t >>= 11
t ^= y

return t

Cryptographic security

Remember that for cryptographic security, it has to be im-
possible to predict future outputs or recover past outputs
given present outputs. The Mersenne Twister doesnʼt have
that property.

It s̓ clear that pseudorandom number generators, both
those cryptographically secure and those that arenʼt, are en-
tirely defined by their internal state. After all, they are deter-
ministic algorithms: theyʼre just trying very hard to pretend
not to be. Therefore, you could say that the principal differ-
ence between cryptographically secure and ordinary pseu-
dorandom number generators is that the cryptographically
secure ones shouldnʼt leak information about their internal
state, whereas it doesnʼt matter for regular ones.

Remember that in Mersenne Twister, a random number
is produced by taking the current element of the state, apply-
ing the tempering function, and returning the result. Weʼve
also seen that the tempering function has an inverse func-
tion. So, if I can see the output of the algorithm and apply
the inverse of the tempering function, Iʼve recovered one el-
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ement out of the 624 in the state.
Suppose that I happen to be the only person seeing the

outputs of the algorithm, and you begin at the start of the
state, such as with a fresh instance of the algorithm, that
means that I can clone the state by just having it produce
624 random numbers.

Even if an attacker doesnʼt see all 624 numbers, they can
often still recreate future states, thanks to the simple rela-
tions between past states and future states produced by the
state regeneration function.

Again, this is not a weakness of Mersenne Twister. It s̓
designed to be fast and have strong randomness properties.
It is not designed to be unpredictable, which is the defining
property of a cryptographically secure pseudorandom num-
ber generator.
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15

SSL and TLS

15.1 Description

SSL, short for Secure Socket Layer, is a cryptographic proto-
col originally introduced by Netscape Communications1 for
securing traffic on the Web. The standard is now superseded
by TLS (Transport Layer Security), a standard publicized in
RFCs by the IETF. The term SSL is still commonly used, even
when the speaker actually means a TLS connection. From
now on, this book will only use the term TLS, unless we re-
ally mean the old SSL standard.

Its first and foremost goal is to transport bytes securely,
over the Internet or any other insecure medium. [DR] It s̓
a hybrid cryptosystem: it uses both symmetric and asym-
metric algorithms in unison. For example, asymmetric algo-
rithms such as signature algorithms can be used to authenti-
cate peers, while public key encryption algorithms or Diffie-
Hellman exchanges can be used to negotiate shared secrets
and authenticate certificates. On the symmetric side, stream

1 For those too young to remember, Netscape is a company that used
to make browsers.

163



CHAPTER 15. SSL AND TLS 164

ciphers (both native ones and block ciphers in a mode of oper-
ation) are used to encrypt the actual data being transmitted,
and MAC algorithms are used to authenticate that data.

TLS is the world s̓ most common cryptosystem, and
hence probably also the most studied. Over the years, many
flaws have been discovered in SSL and TLS, despite many of
the world s̓ top cryptographers contributing to and examin-
ing the standard2. As far as we know, the current versions
of TLS are secure, or at least can be configured to be secure.

15.2 Handshakes

TODO: explain a modern TLS handshake

Downgrade attacks

SSL 2.0 made the mistake of not authenticating handshakes.
This made it easy to mount downgrade attacks. A down-
grade attack is a man-in-the-middle attack where an attacker
modifies the handshake messages that negotiate which ci-
phersuite is being used. That way, he can force the clients
to set up the connection using an insecure block cipher, for
example.

Due to cryptographic export restrictions at the time,
many ciphers were only 40 or 56 bit. Even if the attacker
couldnʼt break the best encryption both client and server
supported, he could probably break the weakest, which is
all that is necessary for a downgrade attack to succeed.

This is one of the many reasons that there is an explicit
RFC [TP] prohibiting new TLS implementations from having
SSL v2.0 support.

2 In case I havenʼt driven this point home yet: it only goes to show
that designing cryptosystems is hard, and you probably shouldnʼt do it
yourself.
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15.3 Certificate authorities

TLS certificates can be used to authenticate peers, but how
do we authenticate the certificate? My bank may very well
have a certificate claiming to be that particular bank, but
how do I know it s̓ actually my bank, and not just someone
pretending to be my bank? Why should I trust this partic-
ular certificate? As weʼve seen when we discussed these al-
gorithms, anyone can generate as many key pairs as they d̓
like. There s̓ nothing stopping someone from generating a
key pair pretending to be your bank.

When someone actually tries to use a certificate to im-
personate a bank, real browsers donʼt believe them. They
notify the user that the certificate is untrusted. They do
this using the standard TLS trust model of certificate author-
ities. TLS clients come with a list of trusted certificate au-
thorities, commonly shipped with your operating system or
your browser. These are special, trusted certificates, that
are carefully guarded by their owners.

For a fee, these owners will use their certificate author-
ity to sign other certificates. The idea is that the certificate
authority wouldnʼt sign a certificate for Facebook or a bank
or anyone else, unless you could prove youʼre actually them.

When a TLS client connects to a server, that server pro-
vides a certificate chain. Typically, their own certificate is
signed by an intermediary CA certificate, which is signed by
another, and another, and one that is signed by a trusted root
certificate authority. Since the client already has a copy of
that root certificate, they can verify the signature chain start-
ing with the root.

Your fake certificate doesnʼt have a chain leading up to a
trusted root certificate, so the browser rejects it.

TODO: Explain why this is a total racket
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15.4 Self-signed certificates

15.5 Client certificates

In TLS, certificates are usually only used to identify the
server. This satisfies a typical use case: users want to com-
municate securely with their banks and e-mail providers,
and the certificate authenticates the service theyʼre talking
to. The service usually authenticates the user using pass-
words, and, occasionally, two-factor authentication.

In public-key schemes weʼve seen so far, all peers typi-
cally had one or more key pairs of their own. There s̓ no rea-
son users canʼt have their own certificates, and use them to
authenticate to the server. The TLS specification explicitly
supports client certificates. This feature is only rarely used,
even though it clearly has very interesting security benefits.

The main reason for that is probably rooted in the poor
user experience. There are no systems that rely on client cer-
tificates that are easy to use for non-technical people. Since
there are few such systems, even tech-savvy people donʼt
know about them, which means new systems arenʼt created.

Client certificates are a great solution for when you con-
trol both ends of the wire and want to securely authenticate
both peers in a TLS connection. By producing your own cer-
tificate authority, you can even sign these client certificates
to authenticate them.

15.6 Perfect forward secrecy

Historically, the most common way to agree on the pre-
master secret is for the client to select a random number
and encrypt it, typically using RSA. This has a few nice prop-
erties. For example, it means the server can make do with
less entropy: since the random bits are handed to the server
by the client, the server doesnʼt need to produce any cryp-
tographically random bits. It also makes the handshake
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slightly faster, since there s̓ no need for back-and-forth com-
munication to agree on a shared secret.

However, it has one major flaw. Suppose an attacker gets
access to the server s̓ private key. Perhaps they managed to
factor the modulus of the RSA key, or perhaps they broke
in and stole it, or perhaps they used legal force to get the
owner to hand over the key. Regardless of how they acquired
it, getting access to the key allows the attacker to decrypt all
past communication. The key allows them to decrypt the
encrypted pre-master secrets, which allows them to derive
all of the symmetric encryption keys, and therefore decrypt
everything.

There are obvious alternatives to this scheme. Weʼve al-
ready seen Diffie-Hellman key exchange, allowing two peers
to agree on secret keys over an insecure medium. TLS allows
for peers to agree on the pre-master secret using a Diffie-
Hellman exchange, either based on discrete logs or elliptic
curves.

Assuming both peers discard the keys after use like
theyʼre supposed to, getting access to the secret keys
wouldnʼt allow an attacker to decrypt previous communi-
cation. That property is called perfect forward secrecy. The
term “perfect” is a little contested, but the term “forward”
means that communications canʼt be decrypted later if the
long-term keys (such as the server s̓ private key) fall into the
wrong hands.

Of course, this is only true if Diffie-Hellman exchanges
are secure. If an attacker has a significant mathematical
and computational advantage over everyone else, such as
an algorithm for solving the discrete log problem more ef-
ficiently than thought possible, combined with many data
centers filled with number-crunching computers, it s̓ possi-
ble that theyʼll break the key exchange itself.
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15.7 Attacks

As with most attacks, attacks on TLS can usually be grouped
into two distinct categories:

1. Attacks on the protocol itself, such as subverting the
CA mechanism;

2. Attacks on a particular implementation or cipher, such
as cryptanalytic attacks exploiting weaknesses in RC4,
or timing attacks in a particular AES implementation.

Unfortunately, SSL/TLS has had many successful attacks
in both categories. This section is particularly about the lat-
ter.

CRIME and BREACH

CRIME3 is an attack by the authors of BEAST. It s̓ an innova-
tive side channel attack that relies on TLS compression leak-
ing information about secrets in the plaintext. In a related
attack called BREACH4, the attackers accomplish the same
effect using HTTP compression. That was predicted by the
authors of the original paper, but the BREACH authors were
the first to demonstrate it as a practical attack. The BREACH
attack was more practically applicable, though: HTTP com-
pression is significantly more common than TLS compres-
sion.

Both of these rely on encryption of a compressed plain-
text, and their mechanisms are virtually identical: only the
specific details related to HTTP compression or TLS com-
pression are relevant. The largest difference is that with TLS
compression, the entire stream can be attacked; with HTTP
compression, only the body is compressed, so HTTP head-
ers are safe. Since the attacks are otherwise extremely simi-
lar, weʼll just talk about how the attack works in the abstract,

3 Compression Ratio Info-leak Made Easy
4 Browser Reconnaissance and Exfiltration via Adaptive Compression

of Hypertext
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by explaining how attackers can learn information about the
plaintext if it is compressed before encryption.

The most common algorithm used to compress both
HTTP and TLS [Hol] is called DEFLATE. The exact mechan-
ics of DEFLATE arenʼt too important, but the important fea-
ture is that byte sequences that occur more than once can
be efficiently stored. When a byte sequence recurs5, instead
of recording the same sequence, a reference is provided to
the previous sequence: instead of repeating the sequence, it
says “go back and look at the thing I wrote N bytes ago”.

Suppose an attacker can control the plaintext. For ex-
ample, the attacker injects an invisible iframe6 or some
JavaScript code that fires off many requests. The attacker
needs some way to inject their guess of the secret so that
their guess occurs in the plaintext, such as the query param-
eters7. Usually, they can prefix their guess with something
known. Suppose theyʼre trying to intercept an authentica-
tion token being supplied in the body of the web page:

<input type=”hidden”
name=”csrf-token”
value=”TOKEN_VALUE_HERE”>

… they can prefix the guess with the known part of that.
In this case, it s̓ a CSRF token; a random token selected by
the server and given to the client. This token is intended to
prevent malicious third party websites from using the ambi-
ent authority present in the browser (such as session cook-
ies) to make authenticated requests. Without a CSRF token,
a third party website might just make a request to the vulner-
able website; the web browser will provide the stored cookie,
and the vulnerable website will mistake that for an authen-
ticated request.

5 Within limits; specifically within a sliding window, usually 32kB big.
Otherwise, the pointers would grow bigger than the sequences theyʼre
meant to compress.

6 An iframe is a web page embedded within a page.
7 The key-value pairs in a URL after the question mark, e.g. the

x=1&y=2 in http://example.test/path?x=1&y=2.
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The attacker makes guesses at the value of the token,
starting with the first byte, and moving on one byte at a
time.8 When they guess a byte correctly, the ciphertext will
be just a little shorter: the compression algorithm will no-
tice that it s̓ seen this pattern before, and be able to compress
the plaintext before encrypting. The plaintext, and hence
the compressed ciphertext, will therefore be smaller. They
can do this directly when the connection is using a stream ci-
pher or a similar construction such as CTR mode, since they
produce ciphertexts that are exactly as long as the plaintexts.
If the connection is using a block-oriented mode such as CBC
mode, the difference might get lost in the block padding. The
attacker can solve that by simply controlling the prefix so
that the difference in ciphertext size will be an entire block.

Once theyʼve guessed one byte correctly, they can move
on to the next byte, until they recover the entire token.

This attack is particularly interesting for a number of
reasons. Not only is it a completely new class of attack,
widely applicable to many cryptosystems, but compressing
the plaintext prior to encryption was actively recommended
by existing cryptographic literature. It doesnʼt require any
particularly advanced tools: you only need to convince the
user to make requests to a vulnerable website, and you only
need to be able to measure the size of the responses. It s̓ also
extremely effective: the researchers that published BREACH
report being able to extract secrets, such as CSRF tokens,
within one minute.

In order to defend against CRIME, disable TLS compres-
sion. This is generally done in most systems by default. In
order to defend against BREACH, there are a number of pos-
sible options:

• Donʼt allow the user to inject arbitrary data into the re-
quest.

• Donʼt put secrets in the response bodies.
8 They may be able to move more quickly than just one byte at a time,

but this is the simplest way to reason about.



CHAPTER 15. SSL AND TLS 171

• Regenerate secrets such as CSRF tokens liberally, for
example, each request.

It s̓ a bad idea to simply unconditionally turn off HTTP
compression. While it does successfully stop the attack,
HTTP compression is a critical tool for making the Web
faster.

Web apps that consist of a static front-end (say, using
HTML5, JS, CSS) and that only operate using an API, say,
JSON over REST, are particularly easy to immunize against
this attack. Just disable compression on the channel that ac-
tually contains secrets. It makes things slower, of course,
but at least the majority of data can still be served over a
CDN.

15.8 HSTS

HSTS is a way for web servers to communicate that what
theyʼre saying should only ever be transferred over a secure
transport. In practice, the only secure transport that is ever
used for HTTP is TLS.

Using HSTS is quite simple; the web server just adds
an extra Strict-Transport-Security header to the
response. The header value contains a maximum age
(max-age), which determines how long into the future the
browser can trust that this website will be HSTS-enabled.
This is typically a large value, such as a year. Browsers
successfully remembering that a particular host is HSTS-
enabled is very important to the effectiveness of the scheme,
as weʼll see in a bit. Optionally, the HSTS header can include
theincludeSubDomains directive, which details the scope
of the HSTS policy. [HJB]

There are several things that a conforming web browser
will do when communicating with an HSTS-enabled web-
site:

• Whenever there is any attempt to make any connec-
tion to this website, it will always be done over HTTPS.
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The browser does this completely by itself, before mak-
ing the request to the website.

• If there is an issue setting up a TLS connection, the
website will not be accessible, instead of simply dis-
playing a warning.

Essentially, HSTS is a way for websites to communicate
that they only support secure transports. This helps protect
the users against all sorts of attacks including both passive
eavesdroppers (that were hoping to see some credentials ac-
cidentally sent in plaintext), and active man-in-the-middle
attacks such as SSL stripping.

HSTS also defends against mistakes on the part of the
web server. For example, a web server might accidentally
pull in some executable code, such as some JavaScript, over
an insecure connection. An active attacker that can inter-
cept and modify that JavaScript would then have complete
control over the (supposedly secure) web site.

As with many TLS improvements, HSTS is not a panacea:
it is just one tool in a very big toolbox of stuff that we have
to try and make TLS more secure. HSTS only helps to en-
sure that TLS is actually used; it does absolutely nothing to
prevent attacks against TLS itself.

HSTS can suffer from a chicken-or-egg problem. If a
browser has never visited a particular HSTS-enabled website
before, it s̓ possible that the browser doesnʼt know that the
website is HSTS-enabled yet. Therefore, the browser may
still attempt a regular HTTP connection, vulnerable to an
SSL stripping attack. Some browsers have attempted to mit-
igate this issue by having browsers come pre-loaded with a
list of HSTS websites.

15.9 Certificate pinning

Certificate pinning is an idea that s̓ very similar to HSTS,
taken a little further: instead of just remembering that a
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particular server promises to support HTTPS, weʼll remem-
ber information about their certificates (in practice, weʼll re-
member a hash of the public key). When we connect to a
server that we have some stored information about, weʼll ver-
ify their certificates, making it much harder for an impostor
to pretend to be the website weʼre connecting to using a dif-
ferent certificate.

Browsers originally implemented certificate pinning by
coming shipped with a list of certificates from large, high-
profile websites. For example, Google included whitelisted
certificates for all of their services in their Chrome browser.

15.10 Secure configurations

In this section, we are only talking about configuration op-
tions such as which ciphers to use, TLS/SSL versions, etc.
Weʼre specifically not talking about TLS configurations in the
sense of trust models, key management, etc.

There are several issues with configuring TLS securely:

1. Often, the defaults are unsafe, and people are unaware
that they should be changed.

2. The things that constitute a secure TLS configuration
can change rapidly, because cryptanalysis and practi-
cal attacks are continuously improving.

3. Old clients that still need to be supported sometimes
mean that you have to hang on to broken configuration
options.

A practical example of some of these points coming to-
gether is the BEAST attack. That attack exploited weak-
nesses in CBC ciphersuites in TLSv1.0, which were parts
of the default ciphersuite specifications everywhere. Many
people recommended defending against it by switching to
RC4. RC4 was already considered cryptographically weak,
later cryptanalysis showed that RC4 was even more broken
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than previously suspected. The attack had been known for
years before being practically exploited; it was already fixed
in TLSv1.1 in 2006, years before the BEAST paper being pub-
lished. However, TLSv1.1 had not seen wide adoption.

Good advice necessarily changes over time, and it s̓ im-
possible to do so in a persistent medium such as a book. In-
stead, you should look at continuously updated third party
sources such as Qualys SSL Labs. They provide tests for both
SSL clients and servers, and extensive advice on how to im-
prove configurations.

That said, there are certainly some general things we
want from a TLS configuration.

TODO: say stuff we generally want from TLS configura-
tions

TODO: http://tools.ietf.org/html/
draft-agl-tls-chacha20poly1305-01

https://www.ssllabs.com/
http://tools.ietf.org/html/draft-agl-tls-chacha20poly1305-01
http://tools.ietf.org/html/draft-agl-tls-chacha20poly1305-01
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OpenPGP and GPG

16.1 Description

OpenPGP is an open standard that describes a method for en-
crypting and signing messages. GPG is the most popular im-
plementation of that standard1, available under a free soft-
ware license.

Unlike TLS, which focuses on data in motion, OpenPGP
focuses on data at rest. A TLS session is active: bytes fly
back and forth as the peers set up the secure channel. An
OpenPGP interaction is, by comparison, static: the sender
computes the entire message up front using information
shared ahead of time. In fact, OpenPGP doesnʼt insist that
anything is sent at all: for example, it can be used to sign
software releases.

Like TLS, OpenPGP is a hybrid cryptosystem. Users have
key pairs consisting of a public key and a private key. Pub-
lic key algorithms are used both for signing and encryption.
Symmetric key algorithms are used to encrypt the message

1 GPG 2 also implements S/MIME, which is unrelated to the OpenPGP
standard. This chapter only discusses OpenPGP.
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body; the symmetric key itself is protected using public-key
encryption. This also makes it easy to encrypt a message for
multiple recipients: only the secret key has to be encrypted
multiple times.

16.2 The web of trust

Earlier, we saw that TLS typically uses trusted root certifi-
cates to establish that a particular peer is who they claim to
be. OpenPGP does not operate using such trusted roots. In-
stead, it relies on a system called the Web of Trust: a friend-
of-a-friend honor system that relies on physical meetings
where people verify identities.

The simplest case is a directly trusted key. If we meet
up in person, we can verify each other s̓ identities. Perhaps
we know each other, or perhaps we d̓ check some form of
identification. Then, we sign each other s̓ keys.

Because I know the key is yours, I know that you can read
the messages encrypted by it, and the other way around. Pro-
vided you donʼt share your key, I know that only you can read
those messages. No-one can replace my copy of your key,
because they wouldnʼt be able to forge my signature on it.

There s̓ a direct trust link between the two of us, and we
can communicate securely.

A slightly more complicated case is when a friend of
yours would like to send me a message. Weʼve never met:
he s̓ never signed my key, nor have I signed theirs. However,
I have signed your key, and vice versa. Youʼve signed your
friends̓ key, and vice versa. Your friend can choose to lever-
age your assertion that Iʼm indeed the person in possession
of that key you signed, and use that to communicate with me
securely.

You might wonder how your friend would ever see sig-
natures that you placed on my key. This is because keys and
signatures are typically uploaded to a network of key servers,
making them freely available to the world.
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The above system can be extended to multiple layers
of friends. It relies in no small part in communities being
linked by signatures, which is why many community events
include key signing parties, where people sign each other s̓
keys. For large events, such as international programming
conferences, this system is very effective. The main weak-
ness in this system are “islands” of trust: individuals or small
groups with no connections to the rest of the web.

Of course, this is only the default way to use OpenPGP.
There s̓ nothing stopping you from shipping a particular pub-
lic key as a part of a software package, and using that to sign
messages or verify messages. This is analogous to how you
might want to ship a key with a client certificate, or a custom
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root CA certificate, with TLS.



17

Off-The-Record
Messaging (OTR)

17.1 Description

OTR messaging is a protocol for securing instant messaging
communication between people [BGB04]. It intends to be
the online equivalent of a private, real-life conversation. It
encrypts messages, preventing eavesdroppers from reading
them. It also authenticates peers to each other, so they know
who theyʼre talking to. Despite authenticating peers, it is de-
signed to be deniable: participants can later deny to third
parties anything they said to each other. It is also designed
to have perfect forward secrecy: even a compromise of a
long-term public key pair doesnʼt compromise any previous
conversations.

The deniability and perfect forward secrecy prop-
erties are very different from those of other systems
such as OpenPGP. OpenPGP intentionally guarantees non-
repudiability. It s̓ a great property if youʼre signing software
packages, talking on mailing lists or signing business in-
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voices, but the authors of OTR argue that those arenʼt desir-
able properties for the online equivalent of one-on-one con-
versations. Furthermore, OpenPGP s̓ static model of com-
munication makes the constant key renegotiation to facili-
tate OTR s̓ perfect forward secrecy impossible.

OTR is typically configured opportunistically, which
means that it will attempt to secure any communication be-
tween two peers, if both understand the protocol, without
interfering with communication where the other peer does
not. The protocol is supported in many different instant
messaging clients either directly, or with a plugin. Because
it works over instant messages, it can be used across many
different instant messaging protocols.

A peer can signal that they would like to speak OTR with
an explicit message, called the OTR Query message. If the
peer is just willing to speak OTR but doesnʼt require it, they
can optionally invisibly add that information to a plaintext
message. That happens with a clever system of whitespace
tags: a bunch of whitespace such as spaces and tab charac-
ters are used to encode that information. An OTR-capable
client can interpret that tag and start an OTR conversation;
an client that isnʼt OTR-capable just displays some extra
whitespace.

OTR uses many of the primitives weʼve seen so far:

• Symmetric key encryption (AES in CTR mode)

• Message authentication codes (HMAC with SHA-1)

• Diffie-Hellman key exchange

OTR also utilizes another mechanism, called the SMP, to
check if peers arrived at the same shared secret.

17.2 Key exchange

In OTR, AKE relies heavily on Diffie-Hellman key exchange,
extended with a significant number of extra, interlocking
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checks. The Diffie-Hellman exchange itself uses a fixed 1536-
bit prime with a fixed generator g.

We suppose that two participants, named Alice and Bob
want to communicate and are willing to exchange sensitive
data with each other. Alice and Bob have a long-term DSA
authentication key pair each, which weʼll call (pA, sA) and
(pB, sB) respectively.

The protocol also relies on a number of other primitives:

• A 128-bit block cipher. In OTR, this is always AES. In
this section, weʼll call block cipher encryption and de-
cryption E and D, respectively.

• A hash function, H. In OTR, this is SHA1.

• A message authentication code,M . In OTR, this is HMAC-
SHA1.

• A signing function, S.

Commit message

Initially Alice and Bob are in a protocol state where they
wait for the peer to initiate an OTR connection, and adver-
tise their own capability of speaking OTR.

Let s̓ suppose that Bob chooses to initiate an OTR conver-
sation with Alice. His client sends an OTR Commit Message,
and then transitions to a state where he waits for a reply from
from Alice s̓ client.

To send a commit message, a client picks a random 128-
bit value r and a random 320-bit (or larger) Diffie-Hellman
secret x. It then sends E(r, gx) and H(gx) to the peer.

Keymessage

Alice s̓ client has received Bobs̓ client s̓ advertisement to
start an OTR session. Her client replies with a key message,
which involves creating a new Diffie-Hellman key pair. She
picks a 320-bit (or larger) Diffie-Hellman secret y and sends
gy to Bob.
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Reveal Signature Message

Now that Alice has sent her public Diffie-Hellman key, Bob
can complete his part of the Diffie-Hellman protocol. Alice
canʼt continue yet, because she hasnʼt seen Bobs̓ public key.

When we discussed Diffie-Hellman, we noted that it does
not authenticate the peer. Bob can compute a secret, but
doesnʼt know he s̓ talking to Alice. As with TLS and other
systems using Diffie-Hellman, this problem is solved by au-
thenticating the key exchange.

After verifying that Alice s̓ public key is a valid value, Bob
computes the shared secret s = (gy)x. Using a key derivation
function, he derives several keys from s: two AES keys c, c′,
and four MAC keys m1,m

′
1,m2,m

′
2.

He chooses an identification number iB for his current
Diffie-Hellman key pair (x, gx). This will be important once
Alice and Bob generate new key pairs, which they will do
later on in the OTR protocol.

Bob computes:

MB = Mm1(g
x, gy, pB, iB)

XB = (pB, iB, S(pB,MB))

He sends Alice r,Ec(XB),Mm2(Ec(XB)).

Signature Message

Alice can now confirm she s̓ talking to Bob directly, because
Bob signed the authenticator for the exchange MB with his
long-term DSA key.

Alice can now also compute the shared secret: Bob has
sent her r, which was previously used to encrypt Bobs̓ Diffie-
Hellman public key. She then computes H(gx) herself, to
compare it against what Bob sent. By completing her side
of the Diffie-Hellman exchange (s = (gx)y), she derives the
same keys: c, c′,m1,m

′
1,m2,m

′
2. Using m2, she can verify

Mm2(Ec(XB)). Once that message is verified, she can safely
decrypt it using her computed c.
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She can then also compute MB = Mm1(g
x, gy, pB, iB),

and verifies that it is the same as Bob sent. By verifying
the signed portion S(pB,MB) against Bobs̓ public key, she
has now unambiguously tied the current interaction to Bobs̓
long-term authentication key.

She then computes the same values Bob computed to
tie his long-term key to the short-term handshake, so that
Bob can also authenticate her. She chooses an identifica-
tion number iA for her current DH keypair (y, gy), computes
MA = Mm′

1
(gy, gx, pA, iA) and XA = pA, iA, S(pA,MA). Fi-

nally, she sends Bob Ec′(XA),Mm′
2
(Ec(XB)).

Authenticating Alice

Now Bob can also authenticate Alice, again by mirroring
steps. First, he verifies Mm′

2
(Ec(XB)). This allows him to

check that Alice saw the same XB he sent.
Once he decrypts Ec′(XA), he has access to XA, which is

Alice s̓ long-term public key information. He can then com-
pute MA = Mm′

1
(gy, gx, pA, iA) to compare it with the ver-

sion Alice sent. Finally, he verifies S(pA,MA) with Alice s̓
public key.

What have we accomplished?

If all checks succeed then Alice and Bob have completed an
authenticated Diffie-Hellman exchange and have a shared
secret that only the two of them know.

Now that youʼve seen both sides of the authenticated
handshake, you can see why so many different keys are de-
rived from the Diffie-Hellman secret. Keys marked with a
prime (′) are for messages originating from the second peer
(the one responding to the advertisement, in our case, Al-
ice); keys without a prime are for the initiating peer (in our
case, Bob).
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17.3 Data exchange

TODO: Explain (https://otr.cypherpunks.ca/
Protocol-v3-4.0.0.html), #33

https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html
https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html
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Modular arithmetic

Modular arithmetic is used for many public key cryptosys-
tems, including public-key encryption algorithms like RSA
and key exchange protocols like Diffie-Hellman.

Modular arithmetic is something most people actually al-
ready understand, they just donʼt know it s̓ called that. We
can illustrate the principles of modular arithmetic using a
clock.

For simplicity s̓ sake, our demonstration 12-hour clock
only shows hours, not minutes or seconds. Also unlike real
clocks, the hour hand is never halfway in between two hours:
it always shows an exact hour, such as 2 or 9.

A.1 Addition and subtraction

It obviously makes sense to add hours on our clock: if it s̓ 2
oc̓lock now, and youd̓ like to know what time it is five hours
from now, you can add 5, and end up with 7, as you can see
in Figure 1.2.
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Figure 1.1: A clock, pointing to 2.

Figure 1.2: 2 + 5 = 7, on the clock.
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Similarly, we can subtract times. If it s̓ 10 oc̓lock now,
and youd̓ like to know what time it was two hours ago, you
subtract 2 and end up with 8.

Figure 1.3: 10− 2 = 8, on the clock.

The “weird” part is when you cross the boundary at 12.
As far as the clock is concerned, there s̓ no real difference
between 12 and 0. If it s̓ 10 oc̓lock now, itʼll be 2 oc̓lock in
four hours. If it s̓ 2 oc̓lock now, it was 9 oc̓lock five hours
ago.

This is an example of what s̓ called “modular arithmetic”.
The modulus, in this case, is 12. We can write the above
equations as:

(10 + 4) mod 12 = 2

(2− 5) mod 12 = 9

In these equations, the mod is an operator, giving the re-
mainder after division. When we are dealing with modular
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arithmetic, where all operations are affected by the modu-
lus instead of a simple single operation, weʼll instead write
(mod 12) at the end of the equation and use an≡ sign instead
of an equals sign (=):

10 + 4 ≡ 2 (mod 12)

2− 5 ≡ 9 (mod 12)

This is read as “ten plus four is equivalent to two, modulo
twelve” and “two minus five is equivalent to nine, modulo
twelve”. That might seem like a trivial notational hack now,
but the difference will become apparent once we start apply-
ing tricks for doing more complex modular computations,
like multiplication and exponentiation.

In general, we call two numbers equivalent modulo some
modulus if dividing them by the modulus leaves the same re-
mainder. We can illustrate this with our previous examples:
10+ 4 = 14 leaves a remainder of 2 when divided by 12, so it
is equivalent to 2 modulo 12. For negative numbers, weʼll
always use positive remainders. For example, 2 − 5 ≡ 9
(mod 12). This is exactly the way a clock works as well: if
it s̓ 2 oc̓lock now, then five hours ago was “nine oc̓lock”, not
“minus three oc̓lock”.

A.2 Prime numbers

Prime numbers are wonderful kinds of numbers that come
back in many branches of mathematics. Anything I say
about them probably wonʼt do them justice; but weʼre in a
practical book about applied cryptography, so weʼll only see
a few properties.

A prime number is a number that is divisible only by two
numbers: 1 and itself. For example, 3 is a prime number, but
4 is not, because it can be divided by 2.

Any number can be written as a product of prime factors:
a bunch of prime numbers multiplied together. That prod-
uct is called a prime factorization. For example, 30 can be
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factorized into 2, 3 and 5:

30 = 2 · 3 · 5

Sometimes, a prime number will occur more than once in a
factorization. For example, the factorization of 360 has 2 in
it three times, and three in it twice:

360 = 23 · 32 · 5

The factorization of any prime number is just that prime
number itself.

Modern mathematics no longer considers 1 to be a prime
number, even though it is only divisible by 1 and itself (1
again). Under this convention, every number not only has
a factorization, but that factorization is unique. Otherwise, 4
could be factored not only as 2 ·2, but also as 2 ·2 ·1, 2 ·2 ·1 ·1,
and so on. The uniqueness of factorization helps in some
important proofs in number theory.

Also, 0 is not a prime number, as it is divisible by many
numbers: all numbers except 0 itself.

Two numbers are called coprime when their greatest
common divisor is 1, or, to put it in another way, they donʼt
share any prime factors. Since the only prime factor a prime
has is itself, that means that all prime numbers are also co-
prime. More generally, a prime is coprime to any number
that isnʼt a multiple of that prime.

A.3 Multiplication

You might remember you were first taught multiplication as
repeated addition:

n · x = x+ x+ . . .+ x︸ ︷︷ ︸
n times

Modular multiplication is no different. You can compute
modular multiplication by adding the numbers together,
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and taking the modulus whenever the sum gets larger than
the modulus. You can also just do regular multiplication,
and then take the modulus at the end.

A.4 Division andmodular inverses

Division is defined as the inverse of multiplication. So, a·b ≡
c (mod m), then c

b ≡ a (mod m).
For example, 5 · 6 ≡ 2 (mod 7); so: 2

6 ≡ 5 (mod 7). This
is because 5 · 6 = 30, which leaves a remainder of 2 when
divided by 7.

Usually, instead of using division directly, weʼll multiply
using something called a modular inverse. The modular in-
verse of a is a number, that when you multiply it with a, you
get 1. This is just like the inverse of a number in regular arith-
metic: x · 1x = 1.

Like in regular arithmetic, not all numbers have modular
inverses. This is the equivalent of dividing by zero in regular
arithmetic.

There are two algorithms that are used to compute mod-
ular inverses: the extended Euclidean algorithm, and with
the help of Euler s̓ theorem.

The extended Euclidean theorem

TODO: explain, and how you can get modular inverses with
it

Using Euler s̓ theorem

Euler s̓ theorem states that if two numbers a and n are co-
prime, then:

aϕ(n) ≡ 1 (mod n)

In that equation, ϕ is Euler s̓ totient function, which counts
the amount of numbers that are coprime to (and less than or
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equal to) its argument. As an example, the totient of 10 is 4,
as 1, 3, 7, and 9 do not have common prime factors with 10.

We can use Euler s̓ theorem to find the multiplicative in-
verse of a. If we just multiply both sides of the equation by
a−1, we get:

aϕ(n)−1 ≡ a−1 (mod n)

That gives us a direct formula for computing a−1. Unfortu-
nately, this is still generally less interesting than using the
extended Euclidean algorithm, for two reasons:

1. It requires computing the totient function, which is
harder than running the extended Euclidean algo-
rithm in the first place, unless you happen to know the
prime factors of n.

2. Modular exponentiation is computationally expen-
sive.

One exception to that rule is for prime moduli. Since a
prime is coprime to every other number, and since there are
p− 1 numbers smaller than p, ϕ(p) = p− 1. So, for a prime
modulus, the modular inverse of a is simply:

a−1 ≡ aϕ(p)−1 ≡ ap−2 (mod p)

This still requires us to be able to efficiently raise a to a power
using modular arithmetic. Weʼll discuss how you can do that
efficiently in the next section.

A.5 Exponentiation

Like multiplication is taught as repeated addition, exponen-
tiation can be thought of as repeated multiplication:

an = a · a · . . . · a︸ ︷︷ ︸
n times
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As with multiplication, it s̓ possible to compute modular
exponentiation by performing regular exponentiation, and
then taking the modulus at the end. However, this is very
inefficient, particularly for large n: the product quickly be-
comes far too large.

Fortunately, it is possible to compute modular exponen-
tiation much more efficiently. This is done by splitting the
problem up into smaller sub-problems. For example, in-
stead of computing 220 directly you could split it up:

220 = (210)2

210 is something you can compute on your hands: start at 2,
which is 21, and then keep multiplying by two. Every time
you multiply by two, the exponent goes up by 1, so by the
time youʼve counted all your fingers (assuming you have ten
of them), youʼre done. The result is 1024. So:

220 ≡ (210 mod 15)2 (mod 15)

≡ (1024 mod 15)2 (mod 15)

≡ 42 (mod 15)

≡ 16 (mod 15)

≡ 1 (mod 15)

A.6 Exponentiation by squaring

A particularly efficient way to do it on computers is split-
ting the exponent up into a sum of powers of two. This
is called exponentiation by squaring, or sometimes also bi-
nary exponentiation. Suppose we want to compute 3209

(mod 19). First, we split up 209 into a sum of powers of two.
This process is essentially just writing 209 down in binary:
0b11010001. That s̓ very practical if the computation is be-
ing performed by a computer, because that s̓ typically how
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the computer had the number stored in the first place.

209= 1 · 27 +1 · 26 +0 · 25 +1 · 24 +0 · 23 +0 · 22 +0 · 21 +1 · 20
= 1 · 128+1 · 64+0 · 32+1 · 16+0 · 8 +0 · 4 +0 · 2 +1 · 1
= 128 +64 +16 +1

We use that expansion into a sum of powers of two to rewrite
the equation:

3209 = 3128+64+16+1

= 3128 · 364 · 316 · 31

Now, we need to compute those individual powers of 3: 1, 16,
64 and 128. A nice property of this algorithm is that we donʼt
actually have to compute the big powers separately from
scratch. We can use previously computed smaller powers
to compute the larger ones. For example, we need both 3128

(mod 19) and 364 (mod 19), but you can write the former in
terms of the latter:

3128 mod 19 = (364 mod 19)2 (mod 19)

Let s̓ compute all the powers of 3 we need. For sake of
brevity, we wonʼt write these out entirely, but remember that
all tricks weʼve already seen to compute these still apply:

316 ≡ 17 (mod 19)

364 ≡ (316)4 ≡ 174 ≡ 16 (mod 19)

3128 ≡ (364)2 ≡ 162 ≡ 9 (mod 19)

Filling these back in to our old equation:

3209 = 3128 · 364 · 316 · 31 (mod 19)

≡ 9 · 16 · 17 · 3 (mod 19)

This trick is particularly interesting when the exponent is a
very large number. That is the case in many cryptographic
applications. For example, in RSA decryption, the exponent
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is the private key d, which is usually more than a thousand
bits long. Keep in mind that this method will still leak tim-
ing information, so it s̓ only suitable for offline computation.
Modular exponentiation can also be computed using a tech-
nique called a Montgomery ladder, which weʼll see in the
next section.

Many programming languages provide access to specific
modular exponentiation functions. For example, in Python,
pow(e, x, m) performs efficient modular exponentiation.
However, the expression (e ** x) % mwill still use the in-
efficient method.

A.7 Montgomery ladder exponentiation

As we mentioned before, the exponentiation by squaring
algorithm is simple and fast, but the time it takes to com-
plete depends on the value of the exponent. That s̓ bad, be-
cause the exponent is usually a secret value, such as a Diffie-
Hellman secret or the private exponent d in RSA.

The Montgomery ladder is an algorithm that resolves
this by guaranteeing the same number of operations irre-
spective of the particular value of the exponent. It was origi-
nally applied for efficient scalar multiplications over elliptic
curves, but the mathematics works for many other systems:
specifically, for any abelian group. [JY02]

Deriving the ladder

This is an optional, in-depth section. It
almost certainly wonʼt help you write bet-
ter software, so feel free to skip it. It is only
here to satisfy your inner geek s̓ curiosity.

This section involves a good deal of
arithmetic tricks. You might want to get out some paper
and pencil to follow along.
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Like with exponentiation by squaring, we start by looking
at the binary expansion of the exponent k. Generally, any k
can be written as a sum (

∑
) of some powers of two (2i). If

2j appears in the binary expansion, weʼll say that kj = 1; if
it doesnʼt, weʼll say that kj = 0. That gives us:

k =

t−1∑
i=0

2iki

That definition might look scary, but all youʼre really doing
here is defining ki as bit of k at position i. The sum goes over
all the bits: if k is t bits long, and we start indexing at 0, the
index of the highest bit is t − 1, and the index of the lowest
bit is 0. For example, the binary expansion of the number 6
is 0b110. That number is three bits long, so t = 3. So:

6 =

t−1∑
i=0

2iki

=

2∑
i=0

2iki

= k2 · 22 + k1 · 21 + k0 · 20

= 1 · 22 + 1 · 21 + 0 · 20

So, (k2, k1, k0) = (1, 1, 0).
The next few steps donʼt make a lot of sense until you see

them come together at the end, so bear with me and check
that the math works out. Weʼll define a related sum, Lj:

Lj =
t−1∑
i=j

2i−jki
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For example, L1 (still with k = 6) becomes:

L1 =
2∑

i=1

2i−1ki

= 21 · k2︸ ︷︷ ︸
i=2

+20 · k1︸ ︷︷ ︸
i=1

= 2 · 1 + 1 · 1
= 3

Essentially, Lj is just k shifted to the right by j bits. Shifting
to the right by one bit is the same thing as flooring division
by two, just like right-shifting by a decimal digit is the same
thing as flooring division by 10. For example: 73, shifted one
decimal digit to the right is 7; 0b101 (5) shifted one binary
digit (bit) to the right is 0b10 (2). Analogously, shifting left
is the inverse operation, and is equivalent to multiplying by
two.

Next, weʼll perform a little arithmetical hocus pocus.
First of all:

Lj = 2 · Lj+1 + kj

While you can verify this arithmetically, the easiest way to
check this is to think of it in terms of right and left shifts. If
you shift k to the right by j positions, that

k = 0b110010111
Lj = L2 = 0b1100101

Lj+1 = L3 = 0b110010
2 · Lj+1 = 2 · L3 = 0b1100100

You can visually verify that L2 is indeed L3, shifted one to
the left (which is the same thing as multiplying by two), plus
that one bit kj that “fell off” when shifting right. kj is the last
bit of Lj; in this case it happens to be 1, but it could equally
well have been 0.
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We define another very simple function Hj:

Hj = Lj + 1 ⇐⇒ Lj = Hj − 1

Starting from our previous result:

Lj = 2 · Lj+1 + kj

⇓ (Lj+1 = Hj+1 − 1)

Lj = Lj+1 + kj +Hj+1 − 1

⇓ (Lj+1 = Hj+1 − 1)

Lj = 2 ·Hj+1 + kj − 2

We can combine these to produce an inductive way to com-
pute Lj and Hj:

Lj =

{
2Lj+1 if kj = 0,

Lj+1 +Hj+1 if kj = 1.

Hj =

{
Lj+1 +Hj+1 if kj = 0,

2Hj+1 if kj = 1.

Remember that weʼre doing this to compute gk. Let s̓ write
the exponentiation out:

gLj =

{
g2Lj+1 =

(
gLj+1

)2 if kj = 0,

gLj+1+Hj+1 = gLj+1 · gHj+1 if kj = 1.

gHj =

{
gLj+1+Hj+1 = gLj+1 · gHj+1 if kj = 0,

g2Hj+1 =
(
gHj+1

)2 if kj = 1.

Remember that Lj is k right-shifted by j bits, so L0 is k
shifted right by 0 bits, or just k itself. That means gk, the
number weʼre trying to compute, is the same thing as gL0 .
By starting at gLt−1 (g raised to the power of the leftmost bit
of k) and iteratively making our way down to gL0 = gk, we
have an elegant inductive method for computing gk based on
two simple recursive rules.
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The important part about this algorithm is the constant
number of operations. If kj = 0, computing gLj involves one
squaring and gHj involves one multiplication; if kj = 1, it s̓
the other way around. No matter what any of the bits of k are,
you need one squaring operation and one multiplication per
bit.

Implementing the Montgomery ladder in Python

The Python implementation of this algorithm, applied to
modular exponentiation, is surprisingly terse:

def montgomery(x, exponent, modulus):
x1, x2 = x, x ** 2
high_bit, *remaining_bits = bits(exponent)
for bit in remaining_bits:

if bit == 0:
x2 = x1 * x2
x1 = x1 ** 2

else:
x1 = x1 * x2
x2 = x2 ** 2

x1, x2 = x1 % modulus, x2 % modulus
return x1

This code block doesnʼt show the definition of bits: it
produces the binary expansion of its argument. Python
doesnʼt provide that by default; bin is close, but that pro-
duces a string: bin(100) evaluates to 0b1100100. The a,
*b = bits(...) construct assigns the first item in bits(.
..) to a, and all remaining bits to b, effectively just skipping
the first bit.

The important thing to note here is that no matter what
the particular value of the exponent is, there is one squaring,
one multiplication, and one modulo operation per bit. Keep
in mind that this doesnʼt necessarily make the entire algo-
rithm take constant time, because the individual squaring
and multiplication operations are not necessarily constant
time.
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A.8 Discrete logarithm

Just like subtraction is the inverse of addition, and division
is the inverse of multiplication, logarithms are the inverse of
exponentiation. In regular arithmetic, bx = y, if x = logb y.
This is pronounced “b raised to the power x is y”, and “the
logarithm of y with respect to b is x”. The equivalent of this
in modular arithmetic is called a “discrete logarithm”.

As with division, if you start from the definition as the
inverse of a different operator, it s̓ easy to come up with ex-
amples. For example, since 36 ≡ 9 (mod 15), we can de-
fine 6 ≡ log3 9 (mod 15). Unlike modular inverses, comput-
ing discrete logarithms is generally hard. There is no for-
mal proof that computing discrete logarithms is intrinsically
complex; we just havenʼt found any efficient algorithms to
do it. Because this field has gotten extensive research and
we still donʼt have very fast general algorithms, we consider
it safe to base the security of protocols on the assumption
that computing discrete logs is hard.

There is one theoretical algorithm for computing dis-
crete logarithms efficiently. However, it requires a quantum
computer, which is a fundamentally different kind of com-
puter from the classical computers we use today. While we
can build such computers, we can only build very small ones.
The limited size of our quantum computers strongly limits
which problems we can solve. So far, theyʼre much more in
the realm of the kind of arithmetic a child can do in their
head, than ousting the top of the line classical computers
from the performance throne.

The complexity of computing discrete logarithms, to-
gether with the relative simplicity of computing its inverse,
modular exponentiation, is the basis for many public key
cryptosystems. Common examples include the RSA encryp-
tion primitive, and the Diffie-Hellman key exchange proto-
col.

While cryptosystems based on the discrete logarithm
problem are currently considered secure with appropri-
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ate parameter choices, there are certainly ways that could
change in the future. For example:

• Theoretical breakthroughs in number theory could
make discrete logarithms significantly easier to com-
pute than we currently think.

• Technological breakthroughs in quantum computing
could lead to large enough quantum computers.

• Technological breakthroughs in classical computing
as well as the continuous gradual increases in perfor-
mance and decreases in cost could increase the size
of some problems that can be tackled using classical
computers.

Discrete logarithm computation is tightly linked to the
problem of number factorization. They are still areas of ac-
tive mathematical research; the links between the two prob-
lems are still not thoroughly understood. That said, there
are many similarities between the two:

• Both are believed to be hard to compute on classical
computers, but neither has a proof of that fact.

• They can both be efficiently computed on quantum
computers using Shor s̓ algorithm.

• Mathematical advances in one are typically quickly
turned into mathematical advances in the other.

A.9 Multiplicative order

Given integer a and positive integer b with gcd(a, b) = 1, the
multiplicative order of a (mod b) is the smallest positive inte-
ger k such that ak = 1 (mod b).



B

Elliptic curves

Like modular arithmetic, elliptic curve arithmetic is used for
many public key cryptosystems. Many cryptosystems that
traditionally work with modular arithmetic, such as Diffie-
Hellman and DSA, have an elliptic curve counterpart.

Elliptic curves are curves with the following form:

y2 = x3 + ax+ b

This is called the “short Weierstrass form”, and is the most
common form when talking about elliptic curves in general.
There are several other forms which mostly have applica-
tions in cryptography, notably the Edwards form:

x2 + y2 = 1 + dx2y2

We can define addition of points on the curve.
TODO: Move the Abelian group thing somewhere else,

since it applies to our fields thing as well
All of this put together form something called an Abelian

group. That s̓ a scary-sounding mathematical term that al-
most everyone already understands the basics of. Specifi-
cally, if you know how to add integers (. . .− 2,−1, 0, 1, 2, . . .)

202
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together, you already know an Abelian group. An Abelian
group satisfies five properties:

1. If a and b are members of the Abelian group and ⋆ is
the operator, then a⋆b is also a member of that Abelian
group. Indeed, any two integers added together always
get you another integer. This property is called closure,
or, we say that the group is closed under addition (or
whatever the name is of the operation weʼve defined).

2. If a, b and c are members of the Abelian group, the or-
der of operations doesnʼt matter; to put it differently:
we can move the brackets around. In equation form:
(a ⋆ b) ⋆ c = a ⋆ (b ⋆ c). Indeed, the order in which you
add integers together doesnʼt matter; they will always
sum up to the same value. This property is called asso-
ciativity, and the group is said to be associative.

3. There s̓ exactly one identity element i, for which a⋆i =
i ⋆ a = a. For integer addition, that s̓ zero: a + 0 =
0 + a = a for all a.

4. For each element a, there s̓ exactly one inverse ele-
ment b, for which a ⋆ b = b ⋆ a = i, where i is the iden-
tity element. Indeed, for integer addition, a + (−a) =
(−a) + a = 0 for all a.

5. The order of elements doesnʼt matter for the result of
the operation. For all elements a, b, a ⋆ b = b ⋆ a. This
is known as commutativity, and the group is said to be
commutative.

The first four properties are called group properties and
make something a group; the last property is what makes a
group Abelian.

We can see that our elliptic curve, with the point at infin-
ity and the addition operator, forms an Abelian group:

1. If P and Q are two points on the elliptic curve, then
P +Q is also always a point on the curve.
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2. If P , Q, and R are all points on the curve, then P+(Q+
R) = (P +Q) +R, so the elliptic curve is associative.

3. There s̓ an identity element, our point at infinityO. For
all points on the curve P , P +O = O + P = P .

4. Each element has an inverse element. This is easiest
explained visually TODO: Explain visually

5. The order of operations doesnʼt matter, P +Q = Q+P
for all P,Q on the curve.

B.1 The elliptic curve discrete log problem

TODO: explain fully
As with the regular discrete log problem, the elliptic

curve discrete log problem doesnʼt actually have a formal
proof that the operation is “hard” to perform: we just know
that there is no publicly available algorithm to do it effi-
ciently. It s̓ possible, however unlikely, that someone has
a magical algorithm that makes the problem easy, and that
would break elliptic curve cryptography completely. It s̓
far more likely that we will see a stream of continuous
improvements, which coupled with increased computing
power eventually eat away at the security of the algorithm.
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Side-channel attacks

C.1 Timing attacks

AES cache timing

http://tau.ac.il/~tromer/papers/cache.pdf

Elliptic curve timing attacks

TODO: Explain why the edwards form is great?

C.2 Powermeasurement attacks

TODO: Say something here.
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AEAD Authenticated Encryption with Associated Data

AEADmode Class of block cipher mode of operation that pro-
vides authenticated encryption, as well as authenticat-
ing some unencrypted associated data

AES Advanced Encryption Standard

AKE authenticated key exchange

ARX add, rotate, XOR

asymmetric-key algorithm See public-key algorithm

asymmetric-key encryption See public-key encryption

BEAST Browser Exploit Against SSL/TLS

block cipher Symmetric encryption algorithm that en-
crypts and decrypts blocks of fixed size

Carter-WegmanMAC Reusable message authentication code
scheme built from a one-time MAC. Combines benefits
of performance and ease of use

CBC cipher block chaining

CBCmode Cipher block chaining mode; common mode
of operation where the previous ciphertext block is
XORed with the plaintext block during encryption.
Takes an initialization vector, which assumes the role
of the “block before the first block”

CDN content distribution network

cross-site request forgery Kind of attack where a mali-
cious website tricks the browser into making requests
to another website. Can be prevented by properly au-
thenticating requests instead of relying on ambient au-
thority such as session cookies
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CSPRNG cryptographically secure pseudorandom number
generator

CSRF cross-site request forgery

CTRmode Counter mode; a nonce combined with a counter
produces a sequence of inputs to the block cipher; the
resulting ciphertext blocks are the keystream

DES Data Encryption Standard

ECBmode Electronic code book mode; mode of operation
where plaintext is separated into blocks that are en-
crypted separately under the same key. The default
mode in many cryptographic libraries, despite many
security issues

encryption oracle An oracle that will encrypt some data

FIPS Federal Information Processing Standards

GCM Galois Counter Mode

GCMmode Galois counter mode; AEAD mode combining
CTR mode with a Carter-Wegman MAC

GMAC message authentication code part of GCM mode used
separately

HKDF HMAC-based (Extract-and-Expand) Key Derivation
Function

HMAC Hash-based Message Authentication Code

HSTS HTTP Strict Transport Security

initialization vector Data used to initialize some algo-
rithms such as CBC mode. Generally not required to
be secret, but required to be unpredictable. Compare
nonce, salt

IV initialization vector
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KDF key derivation function

key agreement See key exchange

key exchange The process of exchanging keys across an in-
secure medium using a particular cryptographic proto-
col. Typically designed to be secure against eavesdrop-
pers. Also known as key agreement

keyspace The set of all possible keys

MAC message authentication code

message authentication code Small piece of information
used to verify authenticity and integrity of a message.
Often called a tag

MITM man-in-the-middle

mode of operation

modes of operation Generic construction that encrypts
and decrypts streams, built from a block cipher

nonce Number used once. Used in many cryptographic
protocols. Generally does not have to be secret or un-
predictable, but does have to be unique. Compare ini-
tialization vector, salt

OCB offset codebook

OCBmode Offset codebook mode; high-performance
AEAD mode, unfortunately encumbered by patents

one-timeMAC message authentication code that can only be
used securely for a single message. Main benefit is in-
creased performance over re-usable MAC

oracle A “black box” that will perform some computation
for you

OTR off-the-record
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OTRmessaging Off-the-record messaging, messaging pro-
tocol that intends to mimic the properties of a real-
life private conversation. Piggy-backs onto existing in-
stant messaging protocols

PRF pseudorandom function

PRNG pseudorandom number generator

PRP pseudorandom permutation

public-key algorithm Algorithm that uses a pair of two re-
lated but distinct keys. Also known as asymmetric-key
algorithm. Examples include public-key encryption and
most key exchange protocols

public-key encryption Encryption using a pair of distinct
keys for encryption and decryption. Also known as
asymmetric-key encryption. Contrast with secret-key
encryption

RSA Rivest Shamir Adleman

salt Random data that is added to a cryptographic primitive
(usually a one-way function such as a cryptographic
hash function or a key derivation function) Customizes
such functions to produce different outputs (provided
the salt is different). Can be used to prevent e.g. dictio-
nary attacks. Typically does not have to be secret, but
secrecy may improve security properties of the system.
Compare nonce, initialization vector

secret-key encryption Encryption that uses the same key
for both encryption and decryption. Also known as
symmetric-key encryption. Contrast with public-key en-
cryption

SMP socialist millionaire protocol

stream cipher Symmetric encryption algorithm that en-
crypts streams of arbitrary size
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substitution-permutation network Generic design for
block ciphers where the block is enciphered by
repeated substitutions and permutations

symmetric-key encryption See secret-key encryption
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